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Abstract {
¥
SOLVING A MULTIACTIVITY MULTIFACILITY ";
CAPACITY-CONSTRAINED 0-1 ASSIGNMENT PROBLEM
by
Krishan Lal Chhabra
Richard Martin Soland, Director of Research
A branch-and-bound solution algorithm and a computer program
implementing this algorithm are developed to solve a multiactivity
multifacility capacity constrained 0-1 assignment problem. The math-
ematical formulation for such a problem, called problem (P), is to find
x,. and y, values that:
ij k
m n p
Minimize I L a.x.+ Iby, (1)
i=1 j=1 4 Y k=1
m
subject to I x,.=1 j=l,...,n (i1)
=7 1]
i=1
m n i
z I d x,, < 8y k=1l,...,p (iii) .
1=1 j=1 ijk 1ij k' k i
!
xij =0 or 1 for all i and 3} (iv)
Y = 0 or 1 for all k (v) r

ii




where 1, j , k are indices for designs, activities, and facilities,
respectively; X, s has value 1 if and only if activity j uses design

i, and Yk has value 1 1if and only 1f facility k 1is used. A design

involves the use of one or more facilities, and “he same design may be used
by several activities.

Problem (P) has the objective of minimizing the sum of aij's -
the variable costs due to the assignments of activities to designs, and

bk's -— the fixed costs due to the facilities used. Constraints (ii)

and (iv) ensure that each activity is assigned to a single design. Each

dijk is the capacity required at facility k if activity j uses design

i , and is thus equal to zero if design i does not involve the use of
facility k . Constraints (iii), therefore, ensure that for each facility
k used, the total capacity required does not exceed the capacity available

S The difficulty in solving problem (P) stems from the indirect relation-

ship between the assignments and facilities, i.e., an assignment xij =1

bears on all the constraints (iii) for which di' is positive, and,

jk
therefore, on several Y variables.

The branch-and-bound solution algorithm uses Lagrangian relaxation
as a basic s%ep in obtaining lower bounds. In additior, it includes several
operational rules, such as a branching rule for a judicious choice of the
branching variable, a capacity rule to eliminate infeasible assignments,
and a bounding rule to eliminate non-optimal assignments.

This dissertation includes relevant background leading to the
formulation of problem (P), mathematical development of the branch-and-
bound solution algorithm, a detailed test example, and computational test
results using the computer program. The areas of appli:ation are identified,
and suggestions for further improvement of the branch-and-bound solution
algorithm are included.

The ccmputer program has been written in FORTRAN IV. A detailed
description of the computer program and guidelines for its use are included
in a separate document entitled "Program Description and User's Guide for
ZIPCAP--a Zero-one Integer Program to solve multiactivity multifacility
Capacity-constrained Assignment Problems.” Althouzh developed for capac-
itated problems, the computer program can also be used to solve uncapacitated
problems in which it is assumed that the facilities have infinite capacity.

3 R Ty Sy —te =




s etrmaTan —— s

ACKNOWLEDGMENTS

I wish to express my deep gratitude and appreciation to my research
director, Professor Richard M. Soland, for introducing me to this problenm,
providing numerous insights and careful direction, and being extremely
generous in sparing his valuable time throughout the research effort.

I am very grateful to my long-time academic adviser, as well as research
adviser, Professor Donald Gross, for his invaluable advice and guidance,
both academic and personal, throughout my graduate program.

Most of this research effort has been supported by the Office of
Naval Research under Contract No. N000Ol14-75-C-0729 for which I am greatly
indebted to Mr. Robert K. Lehto and Mr. Charlie McPeters (Department of
the Navy), and Professor William H. Marlow.

Professors James E. Falk and Garth P. McCormick were kind enough
to review this dissertation, and I am very thankful to them for their
helpful comments.

I would like to thank Mr, William Caves for his assistance in
the development and testing of the computer program, and Professor Charles
Pinkus for providing data for the test problems.

I am very thankful to Bettie Taggart and Teresita Abacan for an
excellent job in editing and typing.

I take this opportunity to thank my parents and my brothers for
their assistance and guidance in my education. F’nally, I owe special
thanks to my wife Promila who deserves a great part of the credit for her
understanding, patience, and encouragement; and tc my children Vinita,
Adhuna, and Nipun for '"letting daddy do his homework" over a long period
of time.




o
.

1 A e

TABLE OF CONTENTS

r—

Page

(PO Ve

ADSETACE &« 4 o v v v v & e e e e e e e e e e e e e e e e e e e e ii

ACKNOWLEDGMENTS . . . ¢ v v v v v v v v v v e e e o e e e e o o s iv

K}
1
LY

Chapters
1 INTRODUCTION . . & & v 4 v ¢ v e o o v o e 4 o o o o o o o s 1
1.1 Generalized Assignment Problem . . . . . . . . . . . 2
1.2 Multiactivity Multifacility Uncapacitated

Assignment Problem . . . . . . « . . 0 0 0 o0 e e 3
1.3 Adding Capacity Constraints -- Problem {P) . . . . . 6

1.3.1 Comparison With the Uncapacitated
Assignment Problem e e e e e e e e e e 7

1.3.2 Comparison With the Fixed-Charge
Location-Allocation Problem . . . . . . . . . 9
1.3.3 Solving Problem (P) . . . « « & « « & « « « . 11
1.4 Areas of Application . . . . . . « v v « v v« « o . 11

2 DEVELOPMENT OF THE SOLUTION ALGORITHM . . . . « +« « .« . « . 15

2.1 Lagrangian Relaxation . . . + .+ « « &« « o & o o = « 15

2.1.1 Relaxing Problem (P) . . . . . . « . « « « +« . 17
2.1.2

1. General Characteristics . . . . . . . . + « . 18

2.2 Some Results e e e e e e e e e e e e e e e e 21

Theorem 1 . . . . v ¢ v ¢ ¢ ¢ 4 « « o o o o 24

Theorem 2 . . . ¢ ¢ ¢« ¢ ¢« 4 o o o « o o » o« 25
Theorem 3 . &« v v ¢ ¢ & o o o« o o o o o o o 28 i

2.3 Relaxation (PRQ) e e e e e e e e e e e e e e e 30
Theorem 4 . v v v ¢ v v 4 v 4 o 4 e 0 e e e s 33 i

Theorem 5 . . . v ¢ v v ¢« o o o« o & o o o« o 33

3 METHODOLOGY FRAMEWORK . . . . . . . ¢ ¢ v v v v o v v o o 35 !

3.1 Bounds . v v v v e b b e e e e w e e e h e e e e e 40

3.1.1 Lower Bound . . . . . & ¢ & v o ¢« ¢ 0 e s e s 40
3.1.2 Upper Bound . . . . . . . . . . 0 o 0 s e e . 41
3.1.3 Best Upper Bound e e e e e e e e e e e e 41

I hﬁ;t-a e 1




wWwwww
[oATRV I S VO )

Facility Usage Rule . . . . . . . . . . . . ..
Capacity Rule e e e e e e e e e e e e e e e s
Branching Rule e e e e e e e e e e e e e e e s
Bounding Rule e e e e e e e e e e e e e
Backtracking Rules C e h e e e e e e e e e e

4 COMPUTATIONAL STEPS AND THE COMPUTER PROGRAM . ., . . .

4.1
4.2

fhe Program T
An Illustrative Example . . . . . . . . « .« . .

5 COMPUTATIONAL TEST RESULTS . . « v v & « « ¢ & « « o

6 FURTHER CONSIDERATION e e e n e e e e e e e e e e s

6.1 Alternative Formulations . . . + « ¢« ¢ « « & + o
6.1.1 Alternative Formulation 1 . . . . . . . .
6.1.2 Alternative Formulation 2 ., . e e e e e
6.1.3 Choice of Lagrange Multlpllers e e .
6.2 Subgradient Method e e e e e e e e e e e e
REFERENCES e e e e e e e e e e e e e e e e e e e e
APPENDICES
A. ZIPCAP Listing (Revised) . . . . + ¢« ¢« v « « . &
B. Detailed Printout for a Test Problem . . . . . .
FIGURES
1. Examples of Alternate Designs for a Systen
of Five Facilities e e e e e e s e e e e e
2. Example of Alternate Designs laving the Same
Facilities but Different Configuration . . . . .
3. Matrix of Variable Costs, Fixed Costs, and
Capacities Required -- Example . . . . . . . .
4a. A Branch-and Bound Tree Illustration . . ., . . .
4b. Partial Solutions for tbe Above Illustration
(Figure 4a) . e e e v e e e e
5. Simplified Flow Diagrdm for the Branch—and—B)und
Procedure ., . . . . . . « « s o o . .
6. Illustration for Estimating the Extent ot the
Brancli-and-Bound Tree Explored . . . . . . . . .
7a. Branch-and-Bound Tree for a Test Problem . . . .
7b. Variables Fixed by the Capacity Rule and
the Bounding Rule e e et e e e e e e e e e e
8. Lagrangian and Other Solution Values for a

Test Problem e e e e e e e e e e e e e e s

42
42
44
45
47

48
53

62
65
65
65
67
69
75

77

83
96

36
49

52
61

61

74




© e

TABLES
1. Examples of Application Areas e e e e e e e e e e e 13
2. Applications of Lagrangian Relaxation e e e e e e e e 16
3. Summary of ZIPCAP Options o e e e e e e e s e e e e s 51
4. ZIPCAP Test Results e e e e e e e e e e e e e e 63
5. LP and Other Solution Values for a Test
Problem e e e e e e e e e C e e e e e e e e 72

vii




1. INTRODUCTION

Multiactivity multifacility assignment problems arise in such
diverse arecas as public health care systems and private multi-echelon
inventory/distribution systems. Such systems invulve the assignment of
activities or tasks to groups of facilities in such a way that total
system cost is minimized. The total system cost has components (fixed
costs) that depend on the facilities actually used as well as components
(variable costs) that depend solely on the assignment made. Most recently
[Gross, Pinkus, and Soland (1979)] there has been interest in including
facility capacity constraints as well. For this kind of problem, i.e.,

a multiactivity multifacility capacity~-constrained 0-1 assignment problem,
we have developed a solution algorithm of the branch-and-bound type and

a computer program based upon it.

The computer program and guidelines for its use are described in
a-separate document [Chhabra and Soland (1980)] titled '"Program Descrip-
tion and User's Guide for ZIPCAP -- a Zero-one Integer Program to solve

multiactivity multifacility Capacity-constrained Assignment Problens."

This document describes the development of the solution algorithm
and computational test results using the computer program. Suggestions

for further improvement in the solution algorithm are «lso included.

This chapter reviews the relevant literature, provides background
leading to the mathematical formulation of the multiactivity multifacility
capacity-constrained 0-1 assignment problem, called problem (P), and
includes potential arcas of application. The theoretical base for develop-
ing the algorithm/methodology are described in Chapter 2. Various components
of the methodology are covered in detail in Chapter 3. Chapter 4 provides
an overview of the computational procedure and the computer program, whereas ‘

computational test results are given in Chapter 5. Suggestions for further

research and potential improvements in the algorithm are included in Chapter

6.




It may be noted that the basic terminology, described below,
in the formulation of problem (P) includes: activ-.ties that must be
assigned, facilities which serve the activities, designs involving one
or more facilities, fixed costs associated with tne fiacilities, and

variable costs associated with the assignment of activities to designs.

The fol.owing review of the relevant literature starts with the
classical assignment problem and leads to the fowrumulation of problem (P)
Different authors have used various terminologie:s in describing relevant
formulations. 1In the following discussion, the original terminologies
are used, and are followed by our equivalent terminology, where appro-

priate, shown in parenthesis.

1.1 GCeneralized Assignment Problem

In 2 classical assignment problem [Hillier and Lieberman (1980)],
the purpose is to find optimal pairs of agents ard tasks or activities.
Each task is assigned to a single agent, and each agent is given a
single task, and the suitability of a particular set of assignments
is determined by a single criterion function such as minimization of
cost. In a generalized assignment problem (GAP), reveral tasks can be
assigned each agent, subject to the resources available to the various
agents [Ross and Soland (1975)], e.g., assigning software development
tasks to programmers and assigning jobs to computeis in a computer

network.

A variety of well-known facility location and location-alloca-
tion problems have been shown to be equivalent to, and therefore
solvable as GAP's [Ross and Soland (1977)]. Here, in general, the
tasks represent demand centers for a good or service, and the agents
represent supply centers to be established at potential sites or
locations. Each demand center must be supplied from a supply center.

A fixed cost is incurred for each supply center estiblished, and, in
addition, there is a cost incurred for each unit processed at a supply
center and transportation costs incurred for the units sent from supply

centers to demand centers. The problem may be '"uncapacitated" -- when

there is no limit to the number of units that may be processed by




4 supply center, or "capacitated”" -- when there are restrictions on the
number ot uwnits that may be processed. The objective is to select supply
center locations and set up a distribution assignment so that the total

cost is minimized.

1.2 Multiactivity Multifacility Uncapacitated
Assignment Problem

A salient feature of the above facility location problems is that
each demand center (activity) is assigned to a single supply center
(facility). Sometimes, however, it may be desirable tn assign an activity
to more than one facility. This leads to the concept of 'design,'" and
the multiactivity multifacility assignment problen [Pinkus, Gross, and
Soland (1973)]. Before describing such a problem, some terminology is

considered first.

A design involves the use of one or more facilities, and represents
a meaningful configuration of facilities along with a meaningful strategy

for using them -- as illustrated in the following examples.

Consider five facilities and their locations as shown in Figure
1(a). (From practical considerations, these may be existing and/or
potential locations.) Three of the possible desigas are shown in
Figures 1(b) to 1(d). Design 1 is completely cent~alized since it uses
only one facility, whereas design 3 is completely decentralized since it

uses all the facilities.

® @ |

® ©
©) ®

(a) Locations for five (b) Design 1l: one facility--
facilities location(3

@ o ®
©) ©
o |® ©)

(a) Design 2: three facili- (d) Design 3: five facilities--
ties~~locations (:), . all locations

Figure 1. Examples of alternate designs
for a system of five facilities

™y
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It is possible for several deslgns to have the same facilities
but different configuration and strategies for using these facilities,
e.g., a multiproduct multi-echelon inventory system [Gross, Pinkus,
and Soland (1972)]. Figure 2(a) shows design 1 containing certain
facilities (varehouses) at the central, regional, and local levels
or echelons. Figure 2(b) shows design 2 with the same facilities

but having a different configuration.

Level cr Echelon

. (:) ..... l- -i ----- (:) - ~ = -4 < -~ Central

_____ (:) L - - - Regional

CQ----- O -0 --O - -@ - el

(a) Desigr 1 (b) Design 2

Fioure 2. E©xanple of alternative desiqns having
the sane facilities buc different
conficuration

The distribution of a given activity at various facilities under design 1
would be different than under design 2, depending, of course, on the
inventory policies. This results in different variable costs (described
later) for that activity under design 1 as against design 2. 1In fact,

it is possible to have a situation where two or more designs have the
same facilities and the same configuration but different strategies,
resulting in different variable costs. For example, one strategy might
specify an equal distribution of a specific activity over the various
facilities, whereas another strategy could impose a different distribu-

tion scheme over the same facilities.
In geaeral, if a system is to be composed of at most p

facilities, the number of alternative designs is P21 if no two designs
have the same facilities. However, with the same¢ facilities but different
configurations and strategies, the number of alternitive designs could be
much higher. 1In practice, it is possible to eliminate a majority of
alternative designs because of geographical, political, economical, and

other factors.




fhe maltiactivity multifacility assignment problem seeks
minimization of some measure ol total system cost such as, total
expected cost over a given time period or total discounted cost over
the litetime of the system. The system cost will fnclude investment
costs for building or leasing the system, operating :osts for operation
and maintenance ot the system, and the costs for providing necessary
services. Both the investnent costs and the opetating costs have
fixed as well as variable components [Ross and Soland (1980)). The
fixed components include those costs associated witn the facilities
ot a given design which are independent of the activities served.
Such costs are called fixed costs. On the other hand, the variabie
compoaents and the service costs include those coscs which are
completely dependent on the service demand of tne activities at
the various ifacilities in a given design. Such coste are called
variable costs. By definition, both the fixed costs and the variable

costs are relative terms.

An equivalent formulation of the multiactivity multifacility
assignment problem defined by Pinkus, Gross, anc Soland (1973) is as

follows.

Let ai, = variable cost of activity j using design 1
b=, ,ms =1, 0.0,

b, = fixed cost of facility k (k=1,...,p)

b, =1 if facility k 1is included in design {1 ,

0 otherwise.




The decision variable xij is defined as:

xij 1 if activity j uses design i ,
0 otherwise.

Then, the uncapacitated assignment problem called problem

(PU) ic to find xij values that:

m n P m n
Minimize L z a . xi. + I bk uf Z bik L =x.. (1)
1=1 j=1 4 i=1 j=1 ™
m
subject to Z xij =1 for j=1,...,n (2)
(*V) i=]
1 = 0 or 1 for all i and j (3)
where u(+) = 6 if (+) <0,

Lif (-) >0,

The objective function of this problem coaisists of two distinct
parts. The first part represents the total variabl: cost, and the
second, the total fixed cost of the system. Constraints (2) and (3)
ensure that each activity is assigned to a single design. Of course,

the optimal solution may involve the use of more chan one design.

Problem (PU) is a 0-1 nonlinear programmirg problem (because of
the step function u ), and a branch-and-bound algorithm using linear
underestimates for the nonlinear part of the objective function has been
described in Pinkus, Gross, and Soland (1973). A h<curistic procedure
for this problem is given by Khumawala and Stinson (1980) in an unpublished
paper. This procedure is an extension of some earlier work [Khumawala
(1973)}.

1.3 Addiung Capacity Constraints -- Problem (P)

A weakness of problem (PU) is that it assum>s unlimited capacity
available at each facility in terms of the activizies using a given
facility. In practice, a facility may not have the capability to

serve every activity, and may have restrictions as to the total

capacity available to handle more than one activity.




¥

Lot s, T oeapacity available at facilicy k , and

= capacity required at facility k for activity j
when activity j uses design 1 .
If design i does not include facility k , then diik = 0 for all j .

Detfine the decision variable Yy as:

Yy = 1 if facility k 1is used,

C otherwise .

Then the assignment problem [Gross, Pinkus, and Soland (1979)],

called problem (P) is to find xij and Yy values that:

m n P
Minimize I Za, x ..+ I by (4)
i=1 g=1 HOH g Kk
m
subject to L x.. =1 j=l,...,n (2)
(P) i=} *
m n
ifl jEl dijk X453 < $1 Y% k=1,...,p (5)
xij’ Y T 0 or 1 for all i,j,k (6)

Constraints (5) of problem (P) ensure that the capacities available at
the facilities are not violated. Problem (P) is, thus, a multiactivity
multifacility capacity-constrained 0-1 assignment problem, as compared
to problem (PU) which is uncapacitated. 1In problem (P), constraints (2)
along with the part of constraints (6) involving the xij's ensure that
each activity is assigned to a single design. Of couvse, the optimal

solution may result in the use of more than one design.

For an example of five facilities and three designs as shown
in Figures 1(b) to 1(d), and four activities; the matrix [aij|bk|dijk]
is as shown in Figure 3.

1.3.1 Comparison with the uncapacitated assignment problem.

Comparison of the capacitated problem (P) with the uncapacitated
problem (PU) shows that the objective functions (1) and (4) are equiva-
lent and constraints (2) in each are the same. Constraints (5) serve
to impose the capacity constraints and at the same time, for a given

design, the relevant facilities are forced in the solution. For an )
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X,, equal to 1, all the facilities with d, > O .wust have vy
ij ijk k

values equal to 1 in order to satisfy (5) and the ccrresponding fixed

o . . o 3 . o 3 = ) >
costs bk are therefore included in (4). If Yy 0 and dijk o,

then xij must be O in order to satisfy (5).

Problem (P) has been formulated as a 0-1 linear programming
problem whereas problem (PU) was formulated as a 0~1 nonlinear

programming problem.

Note that problem (PU) can be easily obtained a: a special

case of problem (P) by letting dij equal 1 (for all j ) if

k

design i uses facility k , and setting all s equal to n . In

k
other words, the corresponding formulation is to find xij and Yk
values that:
m n p
Minimize L ¥ a,x.,+ L by (4)
=1 j=1 My KK
m
subject to b xij =1 j=l,...,n (2)
i=1
m n
(P1) - I x.,. <ny k=1,....p (7
i=1 ik =1 ij k
Xij’yk = 0 or 1 for all i,j,k (6)
where ST 1 if design 1 wuses facilitv k ,

0 otherwise .

1.3.2 Comparison with the fixed-charge location-allocation problem.

Problem (P) bears a resemblance to the well-tnown fixed-charge
location~allocation problem or capacitated facility location problem
[Geotfrion (1975); Russ and Soland (1977)). There are, bowever,
very significant ditfferences between the two. 1In order to point out
these differences, here is a statement of the location-allocation

problem (LA) as given by Gross, Pinkus, and Soland (1979) in a form

e
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similar to that of problem (P).
Find xkj and y, values that
P n P
Minimize L Z a ., x .+ I by (8)
k=l j=1 KK Kk
m
subject to r ox ., =1 j=1l,...,n, (9)
=1
(LA)
n
r d < =1,...
DY xkj XSy k=1, »P (10)
i=1
> = : y
xkj >0, Y 0 or 1 Jjor all j
and  k (1D
Hlere x ., represents the fraction of customer (activity) j's demand

kj

that is supplied by a facility at location k.

The most important distinction between problem (LA) and problem
(P) is the re'ationship between assignments and facilities. 1In problem
(LA) there is a direct connection between the assignments made and the
facilities required, and each assignment affects cnly one facility, i.e.,

the assignment xkj > 0 has a bearing on only one of the constraints

(10) and, therefore, on only one variable Y * On the other hand,

in problem (P), the connection between the assignmernts made and the
facilities required is indirect, and each assignment cazn affect several

facilities, 1 e., the assignment xij = 1 bears or. all of the constraints

(5) for wnich dijk > 0 and, therefore, on several variables Yy

Another distinction is the relative difficulty of the two problems.
While problem (LA) is not easy to solve, branch-and-bYound approaches
have been successful in dealing with it because onc2 values are specified

for the Y the x are found by solving a transportation problem.

jk
Problem (LA) becomes more difficult if the constraincs xkj >0 in (10)
are replaced by xkj = 0 or 1 in order to preclude supply of customer
(activity) 3j's demand by more than one facility. With this change,




- 11 -

problem (LA) may be treated as a genecralized assignment problem and
is solvable using an efficient branch-and-bound algorithm [Ross and
Soland (1977)]. Problem (P) is more difficult than this variation
of problem (LA) because of the above stated indirect connection

between the assignments and the facilities. Even after values have

been specified for all the Y o problem (P) remains a difficult

0-1 linear programming problem because of the interaction of the

constraints.

1.3.3 Solving problem (P).
The capacitated problem (P) has mn+p O-1 variables and

n+p constraints, so the problem dimensions may be large from practical
considerations. For example, with m=n=30 and p=20 , problem (P)

has 920 variables and 50 constraints. The 0-1 LP coumputer codes
generally available are limited in terms of problem size. For example,
the code used by Gross, Pinkus, and Soland (1979) can handle up to 40
variables and 20 constraints. A better and more efficient code
[Geoffrion and Nelson (1968)] allows up to 90 variables and 50
constraints. This fact, together with the structure of problem (P)
suggests that a specialized algorithm could be developed that would

be more efficient for practical problems than the general integer
linear programming algorithms (on which the available codes are

based).

With the above background in mind, the development of the
solution algorithm and the computer program to solve problem (P)

was undertaken and is described in Chapters 2 throsugh 4,

1.4 Areas of Application

The solution algorithm and the computer program are designed
to solve a multiactivity multifacility capacity~constrained 0-1

assignment problem, i.e., one which can be formulated as problem (P),

The basic elements of such a problem are activities that must

be assigned, facilities and their meaningful confipurations
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represented as designs, the fixed and variable costs, and the

capacity requirements of the activities.

'he fermulation (P) applies to existing aad/or proposed
facilities. In other words, it is useful for a situation where the
decision may be to delete some of the existing facilities, as well as

for a situation where the decision involves a selaction out of a set

of proposed facilities.

Table 1 includes examples of areas where formulation (P) is
applicable. Within each application area, activities and facilities

are identified. The implications of designs, variable costs, and

fixed costs are apparent.

Obtaining the values of the data elements b d S,

k> Tijk’ Tk
and in particular aij » can be a simple or a complex exercise depending
on the particulars of the application, and the nature of the components
comprising these elements. For example, in designing multi-echelon

inventory systeus [Gross, Pinkus, and Soland (1979)], a,. represents

the inventory zost of product (activity) 3 wusinng echelon strunture

(design) i and bk represents the fixed cost ¢f installation (facility)

k . The inventory cost ai, includes the cost of procurement, carrying
J

inventory, filling orders, and stockouts. The value aij ,

inventory stockage policies, are arrived at by solving a multi-echelon

and associated

inventory problem. In other words, for product j stocked under echelon

structure i , cptimal inventory policies are determined, at each

installatica of the structure, which yields aij . The facility fixed

cost bk includes the capital expenditure for building the installation,
along with a number of fixed costs associated with operating it, such as

administrative expenses, the expense of renting the facility (if it is

not built), .nd certain other fixed operating expenscs.

In the case of designing a support system for repairable

> e W POV
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items |Gross and Pinkus (1979)], aij represents the total variable

cost 1if unit type (activity) j is repaired under design i . The
set of parameters taken into consideration to computa this cost for
each unit type includes such things as varying population sizes,
failure rates, average repair times, costs assoclated with their
repair, the pirchase and storage of spares, the purchase of repair
channels, and cravel to depdts (facilities) for repair. A computer
program is used to solve a spares and server prcvisioning problem, and
the results provide the basic information to compute aij .

Thus, in general, the data elements of problem (P) may be obtained
directly and/or by solving other related problem(s); it depends on the
definition and the nature of the components compricing these data elements

for a specific application area.

. S S T e cd e e A AN S
. - o 4




2. DEVELOPMENT OF THE SOLUTION ALCORITHM

[RNp—,

The solution algorithm that has been developed t¢ solve problem (P)
is a braach-and-bound procedure which makes use of Lagringian relaxation

as a basic step.

B e mar At R ®

This chapter considers two different Lagrangian relaxations of
problem (P), their general characteristics, and some usetful results leading
to the specific case of Lagrangian relaxation util:zed in the solution

algoritim.

2.1 Lagrangian Relaxation

Vs e

Taking a set of "complicating" constraints of a g2neral mixed-
integer program into the objective function in a Lagrangian fashion (with
fixed nultipliers) results in a '"Lagrangian relaxation" of the original
problem [Geoffrion (1974)]. The relaxed problem is easy to solve compared
to the original problem, and provides a lower bound (for minimization

problems) on the optimal value of the original problem.

Although the use of Lagrangian relaxation in discrete optimization
has been reported prior to 1970 [e.g., Lorie and Savage (1955), Everett
(1963), and Giluore and Gomory (1963)), the "birth" of the Lagrangian
approach as it exists today [Fisher (1978)] occurred in 1970 with the
successful application of Lagrangian relaxations to the traveling salesman
problem [Held aad Karp (1970, 1971)]. This was followed by application
of Lagrangian relaxation to scheduling problems [Fisher and Schrage (1972), and
Fisher (1973, 1876)], the general integer programming problem [Shapiro '
(1971), and Fisher and Shapiro (1974)] and the generalized assignment problem
[Ross and Soland (1975)]}. Table 2 lists the applications of Lagrangian
relaxation as given by Fisher (1978). A review of Lagrangian relaxation

is also provided by Shapiro (1977) and Christofides (1980).

- 15 -
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TABLE 2

Problem

Researchers

Lagrangian Problem

TRAVCLING SALESMAN
Symmetric
Asymmetric
Symmetric
Asymmetric

SCHEDULING

nim Weighted
Tardiness

1 Machine Weight
Tardiness

Power Generation
Systems

GENERAL 1IP
Unbounded Variables
Unbounded Variables
0 - 1 Variables

LOCATION

Uncapacitated

Capacitated

Databases in
Computer Networks

GENERALIZED ASSIGNMENT

Held & Karp (1970, 1971)
Bazarra & Goode (1977)
Balas & Christofides (1976)
Balas & Christofides (1976)

Fisher (1973)

Fisher (1976)
Muckstadt & Koenig (1977)

Fisher & Shapiro (1974)
Burdet & Johnson (1976)
Etcheberry, et. al. (1978)

Cornuejols, Fisher, &
Nemhauser (1977)

Geoffrion & McBride (1977)
Fisher & Hochbaum (1978)

Ross & Soland (1975)
Chalmet & Gelders (1976)

SET COVERING--PARTITIONING
Etcheberry (1977)
Nemhauser & Weber (1978)

Covering

Partitioning

*Source: Fisher (1978)

Spanning Tree
Spanning Tree
Perfect 2-Matching

Assignment

Pseudo-Polynomial
Dynamic Programming
Pseudo-Polynomial DP
Pseudo-Polynomial DP

Group Problem

Group Problem

0 -1 GUB
- 1 VUB
-1 VUB

0-1VUB

Knapsack

Knapsack, 0-1 GUB

0 -1 GUB
Matching
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2.1.1 Relaxiny Problem (P)

By dividing constraints (5) by s and letting 1T,

k
problem () can be restated as follows.
m n

Minimize L )3
i=1 j=1

+

[~
o

215 i3 - Kk
m
subject to L ox,, =1 NSRS .

»)

)2 L < k=1,...,
r, . X, ., __yk ’ P

Y T 0 or 1 for all i,j,k

X, .
ij

A Lagraungilan relaxation (LRU) of problem (P) relative to

(2) is obtained as

e
m n

p n m
Minimize L rLa, x,.,+ Ib ~ X u, L x,. -
i ij k'k ij
i=1 j=1 *J k=1 j=1 3 \i=;

m n

(LR subject to ¥ L r,.. X,, <y
u i=1 j=1 ijk 7ij k

for all i,]j,k

\

where the uj

ik T Yijkssy,

(2)

(6)

constraints

(12)

(5"

(6)

are Lagranse multipliers; it follows that the

vptimal value of problem (LRu) is a lower bound on the optimal value of

problem (P), i.e.,

in which 2(-) 1is the optimal value of problem (.).

Z(LR ) < Z(P) . We will continue to use this notation
o =

Another lLagrangian relaxation (LRV) of problem (P), relative to

constraints (5'), is obtained as
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ininize + 5 b -z -
Mininize aij xij Wi vk(yK i ? xij rijk)

e ™
[
x
=

rd

subject to (2) and (6), or e¢quivalently,

;
Minimi Tz fa..+Z v r,, - Xy [v. -b 13
iinimize o X4 ( T le) ; Y- ( K k) (13)

(LRV) 1 subject to Lx,, =1 j=l,...,0 (2)

i
= l-'
L xij’ Yy 0orl for all i,j,k (6)

where the v, are non-negative Lagrange multipliers; it follows

that z(LRV) < Z(P) .

2.1.2 General Characteristics

A Lagrengian relaxation provides a lower bound on the optimal value
of the orginal problem, i.e., in our case Z(LRu) < Z(P) and Z(LRV) < Z(P) .
The usefulness of a Lagrangian relaxation depends on the closeness of this
lower bound to the optimal value of the orginal proyblem. However, the
relaxation must be "easy" to solve relative to the original problem. We

observe that the optimal value of Vi in problem (Lkv\ is 1 if

(vk - bk) >0 and 0 if (v, - bk) < 0, and then proliem (LRV) reduces

k
to n 0-1 "multiple choice" problems which are very easy to solve.

On the other hand, problem (LRu) reduces to k 0-1 knapsack problems.
However, these problems are not independent because of the interaction
of constraints (5') and the indirect relationship described earlier in
Section 1.3 between the assignments and the facilities. In view of this

complexity, relaxation (LRu) will not be considered further.

The choice of Lagrange multipliers in relaxation (LRV) should
be such that Z(LRV) is as large as possible and hence as close as
possible to Z(P) in view of the relationship Z(LRV) < Z(P) . 1In other
words, an equivalent problem is to find a vector v {representing Vi vy

...,vk) to
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Maximize [Z(LRV)] (14)
{n)

v>0
Obviously, Z(LRV) < Z(m = Z(P)

The general properties of Lagrangian relaxaticn have been well
described in the literature [e.g., Geoffrion (1974), Geoffrion and McBride x
(1978), and Fisher (1980)]. Some of these properties relating the

Lagrangian relaxation and the usual LP relaxation are stated below.

The LP relaxation (?) of problem (P) is obtained by relaxing the

integrality constraints (6), i.e., the formulation (P) is

m n p
Minimize I a, x,.,+ Iby (4)
i=1 j=1 M OH g KK
m
subject to L ox ., =1 j=l,...,n (2)
i=1 M
(n) m n
= ]
iil j§1 rljk 1 <Yy k=1,...,p (5")
Yk <1 k=1,...,p (15)
Xij’ yk >0 for all i,j,k (16)

Note that the constraints xij < 1 are implicit in constraints (2).

Also consider the following partial convex hull relaxation (P*%)

of problem (P).

4 m n P
Minimize L ¥ a,, x,,+ ¥ by (&)
=1 =1 HOH ey KR
(P*) 4 m n
subject to L Ir,.,x ., <y k=1,...,p (5")
i=1 j=1 ijk Tij k
L X5 Y € convex hull {(2), (6)} (17)
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Thea the relationships between the optimal values of various

problems [Geoffrion and McBride (1973)) are as follows.

z(P) < Z(LR"\;) < max Z(LR ) = Z(D) = Z(P*) < Z(P) (18)
v>0
N Y N

n
where Vv are the values Vys v2,...,vP oi a dual optimal solution

of (P) corresponding to constraints (5').

Thus, the optimal dual solution associated with the nsual LP relax-
ation furrishes a choice of Lagrange multipliers sucn that the associated
Lagrangian relaxation is at least as tight as the usual LP relaxation,
and generally a good deal tighter and even as tight as the partial convex

hull relaxation.
Since Z(D) = 2(P*) , the quality of the bound obtained from the

Lagrangian relaxation depends on where Z(P*) 1lies in the range between

Z(P) and Z(P) . 1t turns out that problem (LR‘) possesses the

"integrality property,” i.e., the optimal value of problem (LRV) is not
altered by dropping the integrality conditions on its variables and
therefore [Ceoffrion (1974)]

z2(D) = Z(p*) = Z(P) (19)

Thus, the Lagrangian relaxation (LRV) is no better than the LP
relaxation (5). On the other hand, Lagrangian reluxation (LRu) does

not possess the integrality property and, hence, couid provide an equal
or better bound than the LP relaxation (5) ; but the computational

difficulties do not favor pursuing formulation (LRU)

It is possible to consider altcrnative formulacions of problem

(P) with the obje:tive of obtaining tigphter bounds. This aspect is

discussed in Chapter 6.
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[( Some Results

We now turn to the basic question of choosing Lagranpe multipliers

v so that (LR ) 1is optimal to the extent possille, vhich is equivalent
Y
to solvirng problem (3). We also need to consider this question when some

ol the xij and Yi var iables have been assigned values of 1 or 0, i.e.,

at a node other than the starting or "root' node in the branch-and-bound
tree. For this purpose, some terminology is defined and formulations

corresponding to problems (P), (LRV) and (D) are first developed. Then

some important results pertaining to the choice o7 Lagrange multipliers
will be proved. Gavish (1978) provides a method of obtaining the 'best'
multipliers, basced on solving an equivalent linear programming problem.
Such a formulation is difficult in our case, and, besides, we propose

to avoid solving LP problems in our branch-and-bound procedure.

Define the sets

w
1

{(i,j)éxij has an assigned value of 1 or 0} , and

T = {k has an assigned value of 1 or 0} .

1

Yk

These sets represent the partial solution of problem (?) and the variables

contained in these sets are termed fixed variables. [Geoffrion (1967)].

Let S and T represent the corresponding complementary sets, i.e.,
comprised ot the xij and Yk variables, which have not been assigned
specitic values ind, therefore,are called free variables. A completion

of a partial solution is defined as a solution that is determined by

S and T together with a binary specification (0 or 1) of the values

of the free xij and variables from sets S and T . 7

"
Let SUS = S, and TUT = Ty

lonsider a partial solution to problem (P) in which specific values

(ot 1 or 0) are assigned to some of the X and such that

Yy
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m
I x,, <1 Vi,
=1 1
(1,3)es
<
t and Z Z Tiik %5 S Yk VkeT
13
} (i,3)€S
!
2'. Z rijk xij <1 VkeT
i3 _
(i,3)es
ana such that x.. =1 ard e, =1 imply tnat keT and y, = 1.
ij ik k
Recall that, by definition, e - 1 4if design { wuses facility k ,
and e,, = 0 otherwise.
ik
The problem of finding an optimal completion of the partial

solution of problem (P) can be stated as follows.

Minimize ZZ a,, x,,+Zby +LL a _ x .+L!by
ij—i_‘] 1j k_kk 1 1713y Kk (20
(1,j)es keT (i,j)es keT
subject to i Xg5 T 1- i %45 Vi (21)
2,) (1,1)€8 (1,3)es
. § gk *yg SV T I Yype %y VR (22)
(1,3)€S (1,3)es
= V(i,i)eS , keT (23)
50 e Oor 1l (1,1

We call this problem (PE) where £ indicates the nodc¢ in the branch-and-

bound tree.

A Lagrangian reclaxation of problem (Pl) vith respect to constrailnts g

(22) is obtained by introducing non-negative Lagrange multipliers Vi

k=1,2,...,p ; the relaxation is then
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Minimize LY a,..,x,.+%L by +Z2X a, x,,+5Lby
i ij Tij K k“k ij ij j K k'k i
(i,j)€es keT (i,j)€es keT i3
-Lv ly -Y2% r,.,. x,,~-L L r,, x,,
2
K k 13 ijk Tij i ijk Tij (24)
(i,3)es (i,1)es
subject to % xij =1 - ; xij Al (21)
i 7 i
(i,3)es (i,j)es
X, ,y =0or1l V(i,:)eS , keT (23)
ij k

Rearranging (24), and using the relationship T

TLJ%, we have problem

1
(LRﬁ,v) :
Minimize LY ox, a.. +Z v, r,, +Lfx,.fla,.,+L v, r,,
i _1 ( ij chlk 1Jk> i ij ij keTl k 13k>
(i,j)es (i.j)es
-L y (v - b ) -L y (v -b ) (25)
(LR ) keT k k k keT k k k D
Xy V
subje . =1 - j 2
ubject to % xij 1 ; xij Vi (21)
i i
(i,j)cs (i,3)es
xij’ Y = 0 or 1l V(i,j)eS , keT (23)

r N o he N 7 ) < Z(p
Then we have A(LRQ,V) < /(lg)
Lagrange multipliers

max imize

pro

g

-0

Z(LRQ v) , i.e., the

’

Maximize

(,)

v

T Twe e T

VisVyseens Vo

An important problenc is the choice of

v that

» represented by vector s

blem (D

I'R,x', ‘v):‘

)

(26)




We now state and prove some theorems related to the choice of Lagrange
ltiplie sV seney .
multipliers vy, vp
Theorem 1: There exists an optimal solut.on to problem (D) in
which Vk-z bk for all k .
Proof: Suppose vl < bl , in an optimel scolution to problem
(D), i.e., Z(D)

* <
Z(LRV*) where 7y bl .

Recall that

Z(LR ) = Min I I x,. (a.. + I vEr Sy, [v*F -1
v i ij ij X k ijk “ klk k
s.t. I X5 " 1 vj (2)
i
xij’ Y = Oor 1 Vi,j,k (6)

. , *
For vf < b;, the optimal value of y; is 6 , and the term - Y1 (v1 - bl)

in the objective function is O.

Consider what happens if we increase vi to b1 . Call the

resulting vector Vv . Consider problem (LRV) . The optimal value of

y; in problem (LRV) is Oor 1, and the term =~y (v. - b is 0.

1 'y o)

However, the optimal value of Yy is the same in problems (LRV*) and

- b, ) 1is the

(Lg!) for all k > 1 . Therefore, the quantity I Y (vk K

k
same at the optimal solution for both v = v¥ and v = v o

Since vy > vf , we note that in the objective function,

p
+ L

k=1

™Mo

a + 2

0 I Vi,

> *
Lk Tk = Yk "1k

and therefore Z(LRV) > Z(LRV*) .

' '“
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It tollows that there is an optimal solution to problem (D)

in which v, > b

1 1

Since the choice of k=1 was arbitrary, the sazme result holds for
any value of k, k=l,...,p ; hence, there exists an optimal solution to

problen (D) in which vk > bk for all k .

Theorem 2: There exists an optimal solution to problem (DL) in

vhich v, > b, if () keT or (ii) keT and y =0 .

Proof: Suppose vy < bl in an optimal solution to problem

. = *
(Dl) , l.e., Z(Dl) Z(LRQ’V*) where vy < bl .

Then k=1 can ke such that keT or keT .

Recall that

Z(LR, %) =Min L% x.,[a . +Zvir..
L,V ij ij ( ij I k 13k>
(1,3)es
Py (a5 )
13 1 S ij
(i,3)es
-y vie — b \-L vy, [v®¥-b
keT k ( k k) KET k k k
= - }_‘ 3 t
s.t. ? X3 1 S Xy Vi (21) ",
(i,3)es (i,j)es
xij’ Ve T 0 or1l V(i,j)es , keT 23

1< by ard keT , the optimal value of 1 is 0 and the

term -y, (vi - b)) in the objective function is O .




Let vt be increased to bl ; call the resuiting vector v

Consider problem (LR, ) . The optimal value of y_, in (LR, ) is
£,v 1l L,v
0 or 1, thenthe term - yl (!1 - bl) is 0. For k >1, the
optimal value of i being the same in (LRQ,V*) and (LRR’!? , we
find that £ Yy (vk - bk) is the same at the oftimal solution for both
keT, ~
1
v=v* and v = vV . But vi > vi ; therefore
+ * i,i)e$S nd (i,j)eS
a i+ ow Fig 235y T virg V(Des a (i,3)
kcll keTl

Hence, Z(LRK v) > Z(LR2 v*) , wherefrom it follows that there is an
» X

’

optimal solution to (Dz) in which vl z_bl . S-nce the choice of

k=1 was arbitrary, the same results hold for any value of k, keT .

Hence, there exists an optimal solution to problem (DQ) in which

v. >b for all keT .
k — 'k

Case (ii): fet k€T and y, = 0
K

Considering problem (LR, %) , for k=1, v¥ <b, , and
Lyv 1 1

y) = 0, the term - yl(vf - bl) in the objective function is O .

%
Increase v, to bl and call the resulting ve:itor v . The

term - yl(_\gl - bl) is 0. For k > 1, the optimal values of Y

are the same in problems (LR, %) and (LR, ) . Therefore I
Lyv L,v

- keTl

yk(vk - bk) is the same at the optimal solution for both v = v*

and v = v . Since Xl > VI N

>a,. + 1L vﬁ r, V(i,j)=$ and (i,j)eS
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Therefore Z(LR, ) > Z(LR *) . 1t follows that there exists an optimal
.'v, -

\Y £,v

solution to (DQ) in which > b, . The choice »f k=1 being arbitrary,

Vil P

the same results hold for any value of k , keT ond Y © 0 3 which proves
case (ii) of the Theorem.

It may be added that there is another possibility which complements

case (ii) of Theorem 2, i.e., if kT and = 1 . We treat this poussi-

"k
bility as a conjecture since a result similar to the one above could not
be proved, as discussed now.
With y, = 1 and vf - hl , we observe from problem (LR. v*)
. )

S . K i
that for a solution vector X (with elements xij*) and Y (with

:leme ;% #e *s , * * =
elements ¥y ,...,}p}yl 1 and Yo ,...,yp 0 or 1),
Z(LR. %) = L ¥ x,,*% a +vir ..+ 12 v,*r
K,V ) i ij ( ij ij1 K>1 k 1Jk>
(i,j)es
+ITLx, ¥ la  +tvFr o +3 v AEr.
1 ij ( ij 1 ijl k>1 k 1Jk>
(i,3)€s
- oy, * [vE-b ) -y, * - b \ -1 y*[v¥-b
KET k ( k k) {1 l/ K1 k k k
keT
Since wv;* < bl and vy = 1 the term - yl(vl* - bl) is positive.

If we raise v, * to b

1 10 Say V) o the term - yl(x_ - bl) is 0

The difference between Z(LR\ v*) and the object.ve function

L3

% *
value of problem (LRi v) with X=X and Y=Y is
B

|
o

Y ox. Kk oy + S V%) - N x, * N
ey XV T T Oy oYy ) . X570 T

[

- ¥ - ¥ ) * - X
(by = vi™) : ? xpi* by = vi® vy 1

This ditference can be either negative or positive, and s> we cannot

conclude that there is an optimal solution to problem (DR) in which

I R 7 o= AL T A W SO

“y -~
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vy > bl . We believe this conclusion to be false.
- - * * -
Theorem 3: Let (X , Y ) solve problem (LRV) for Vi T bk

* *
for all k . If (X , Y ) is feasible for problem
(P), there exists an optimal solution to problem /D)

in which vk = bk for all k .

Proof: In view of Theorem 1, there exists an optimal solution

to (D) in whichk v, > b for a1 k, i.e., v >Db

k k

Let v be such an optimal v . We will show that

Z(IRV) E_Z(LRb) , from which it follows that v = b

solves problem (D)

Recall that

Z{(LR ) = iin I % x a + ¥ - Ly v, - b
v Y i ij Kk —%k ijk K k { & k
$. ta = i 2
s L %55 1 Vj (2)
2
xij D Oor 1 Vi,i,k (6)
Since v > b, yk = 1 Vk 4is an optimal choice.
Hence, Z(LR ) =Min I I x_, a,,+rv, r Y-Ifv, -b,
,! X i j lJ (1J k—-]l\ lJA.) k (_‘k L\)
s.t. Lx, 6 =1 Vi (2)
. 1]
i
x  =0or 1 Vi,j (6a)
ij

Now consider (LRb) . Since v =b , the lust term of the objective

function drops out, and we have

Z(LR, ) = Min ¥ ¥ x_ . a  + Xb r,.
b XY 1] 1J(1J kk”k)

subject to (2) and (6)

et W




,x
b

>

RS

AN
=

subject to (2) and (6a)

Yix,.* fa 4+ L Db r, .

where X" with elements x. . is the mirimizing solution vector
1]

which satisfies (2) and (6a)

% *
Now (X , Y ) feasible for (P) implies that

) rok L Vk
Elxgtriginial :
J
Hence, X v, - b LLx,  *r, <L (v —b)
Y z M k
K ( k k) ij ij ijk K K ,
or b v. - b L x, ke, =-4{fv b, ] < O (27)
K (—k k) i i ijk k(—k .-')-—

- 3 = . - }\ - '
Rewriting, Z(LR!) M;n }; 3 X [aij + 15; Tiix <bk +(Y—k bk))}

Y T bk)

subject to (2) and (6a)

= MinyZ L x,,  fa,, +Zr_ . b
X’ij 13(13 ijk k)

>t
—

=

1
J

+ X{f{v, -~ b Lix,,r,, -L v -b
k(—k k) ij ij "ijk K (k k)}

subject to (2) and (6a)
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by (27), or Z(LRV) < Z(LRb) ; it follows that v = b solves

problem (D).

2.3 Relaxation (PRQ)

Theorers 1 and 3 are useful in providing a choice of Lagrange

4
A\
»
H

multipliers as a starting point in solving a reluxation of problem (P)
at the root node. Theorem 2, similar to Theorem 1. provides results for

a partial solution of problem (P), i.e., at a node other than the root

node where some of the X, and Y have been fixed at 1 or O .
J

IS P

Theorem 1 is important in pointing out that a certain set of lagrange

multipliers v such that vk > b, for all k would provide an optinmal
¢ — Tk

choice. Theorem 3 narrows this choice to vk =b_ for all k for a
~
specific situation, i.e., when the resulting solution is feasible for

problem (¥).

PN

Letting v, = bk for all k , problem (LRV) becomes:

,
Minimize LI e, x.. (28)
T ij “ij
1]
subject t Ix,.=1 i 2z
(Lgb){ subject. to : %45 Vi (2)
x., = 0Qor 1 Vi,j (6a)
1]
\
where Cij = aij + L bk rijk . (29)

Note that problem (LRb) is very easy to solve; its optimal value is just

the sum of the minimum (over i) cij for all j , i.e.,

Z(LR ) =§ min {eg5) (30)

We solve this problem as a starting point at the root node in our branch-

and-bound procedure.
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As o move to other nodes by fixing some of the variables, we
must deal with problems having the form of problem (PQ) instead of

problem (P). The appropriate relaxation is then prublem (LRQ v), whose
-y

optimal value Z(LR, v) is the lower bound required at node 4 . Our

i

algorithm branches only on x,. variables and uses tae constraints
1]

(5") to [ix appropriate Yk variables at values »f 1 . More precisely,

if x is fixed at 1 and = 1, then y
\ij 5 xed a an el eny,

feasible completion of problem (P) so we can include the index k in

nmust be 1 1in every

1T and fix Yi at 1 . To account for the various possible combinations

of 1 and j , we define

= it x.. e, >0 for any (i,]j)cS
@, 1 X5 O ‘ ny (i,3)es ,
(3D
= 0 otherwise .
At any node U then, Yi is fixed at 1 and keT if Ao = L.
There is another way in which it is appropriate "o fix Y at

1 at node ¢ . It the available choice of designs for some activity j
requires the use of facility k , then y, may be set to 1 . Formally,
define

W= {jl(i,5)es and T 1 for some i} (32)

and its complement W . Then define

bk- = 1 if jéﬁ m;n dijk >0,
¥
(i, j)e§ (33)

0 otherwise .

Then Yy is fixed at 1 and kT il ka = 1 . 1It is convenient to

combine these two notations in torcing to 1 . Define

Yy
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by = Max{ap, ) Bkl } (34)
sO ¥y is fixed at 1 and keT if 6k£ = 1.

To return to the relaxation, problem (LRQ v)’ we must make a choice
b

of the vector v of Lagrange multipliers. Of course, we would like to

use an optimal choice, i.e., a vector v that solves problem (DQ)

Recall, however, that Theorem 2 did not provide us any useful information

about the optimal value of vy if keT and Yo T 1 . To simplify our

approach and have recourse to the results of Theorems 1 and 3, we choose

vy T 0 if keT and Y = 1 . Note that there ace no KkeT such that
Y = 0 because of practical considerations and becaise our branching rule
only results in fixing Yy values at 1 . Problem (LR2 v) now takes the
form
Miniai:e I rx,, a,, +2Z v, r,. Y=Z y fv. ~b W+ Ib (35
iy U ( 13 pet K ”k) keT ]"( k k) ket K
(|4R2‘6)< subject to ? X]'_j =1 , V] (6)
xij’ Y = 0or 1 for all (i,j)eS , keT . (23)
.
Note that in this problem (LRE ;), ;k= 0 if keT . Also note how closely

it resembles prohlem (LRV), the relaxation at the root node. As in that

case, we would like the lower bound Z(LRK ;) to b2 as large as possible,
*

i.e., we seek Vv to

Maximize [Z(LRQ’;)] (36)

Because of the close similarity of problems (LRQ ;) and (LRV),
’
it is possible tn obtain results about problem (DE) that are analogous

to those obtained about problem (D). We state these results as Theorems

4 and 5. Their proofs are omitted because they follcw precisely the




- 33 -

provts of Theorems 1 and 3, respectively, and their validity follows

trom the fact that problem (LR, ;) is essentiually the same as problem

’

(LRy) but involves only the free variables.

Theorem 4:  There exists an coptimal solution to problem (DE)

in which v, > b for all keT .
k- k
_ X ¥
Theorem 5: Let (X , Y ) solve problem (LRE ;) for

_ x %
vk = bk for all keT . 1L (X , Y ) satisfies

(5') for all keT , there exists an optimal solution
to problem (DE) in which Vk = bk for all keT .
Just as Theorems 1 and 3 motivated us to use the relaxation

prublem (LRb) to obtain our lower bound at node 1 , Thecorems 4 and 5

motivate us to set v = b

K for all k€T in relaxation problem (LRQ ;)

k
to obtain our lower bound at node £ . With this specification, problem

(LRQ ;) becomes

r

Minimize Y uLe,. x..+ FC (37)
. i3 Tij L
1
(PR,) A subject to Lox,, =1 Vi (2)
' i 1]
Xi5 = 0 or 1 V(i,j)es , (23a)
..
where
= + ..
€ij2 i3 T g b Tijk
; (38)
Ty +kil by (1 B 5kﬂ)rijk

and the fixed cost FCQ is given by

P
o = 7 = . 39
FC I b E 810 bk (39)
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This specific relaxation, problem (PRQ), is o1 the same form as

problen (LRb) and is equally easy to solve in one pass. Its optimal
value Z(PRQ) serves as the lower bound at node 2 . Note that for £=1 ,

problem (PRl) is the same as problem (LRb) .

It is clear that setting each Lagrange multiplier v, to bk

y for keT and to 0 for keT 1is not generally oftimul in terms of
achieving cthe tightest lower bound (except as per Theorem 3). But it
provides a gnod starting point in seeking an optimal vector v and it
provides an easily calculated lower bound at each node of our branch-

and-bound procedure. The question of how to improve upon this choice

of multiplier values will be discussed in Chapter 6.




i

3. METLODOLOGY FRAMEWORK

The branch-and-bound procedure/methodology developed to solve

problem (P) uses Lagrangian relaxation (PRQ) as a basic step. The
branching rule dictates which Xij variable to branch on at each node,

Iln addition, there are certain rules (e.g., the capacity rule and the
bounding rule) which contribute, significantly, in improving the overall

efficiency of the procedure.

Some basic terms such as fixed and free variables, partial solution
and its completion were introduced in the previous chapter. This chapter
first provides a prreliminary discussion of the branch-and-bound methodology,
[Ceotfrion (1967), and Geoffrion and ilarsten (1972)]. epresentation and

storage of the xij variables for branching and backtracking is described

in order to provide continuity and consistency with the computer program
covered in Chapter 4. This is followed by a description of the major

components of the branch-and--bound methodology.
Branching and backtracking is done on the xij variables. The
branching commences by tixing the xij variable (selected by the branching

rule) to 1 and moving tv the left branch node. When backtracking, we

fix the corresponding xij variable at 0 and move to the right branch

node (it the rignt branch node has not already beer explored). An xij
variable can also be fixed at 0 or 1 by rules other than the branching
rule. The capacity rule and the bounding rule are twoc such rules employed

in our methodoloyy.
Figure 4a shows a branch-and-bound tree., The Xy variables fixed

at 0 or 1 at any node due to rules other than the branching rule arc

shown in parenthesis at the appropriate node.

_33 -
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Left Branch

(i.e % 1) ight Branch
ey Xy

4.e., x,,=0)
13

IR ot v B rma i, I

Node( l’ is the root node and also the parent node for nodes

(:):nm (:)
Node (:) is the parent node for nodes (:) and (E), etc.

Figure 4a.

A branch-and-bound tree illustration

Node (L) Partial Solution (SQ)
1 ¢ f
2 (103, - 301, - 401} ;
3 {103, - 301, - 401, 402} 1‘
4 {103, - 301, - 401, - 402, - 201, 101} ';
5 {103, - 301, - 401, - 402, - 201, 101, 204} "
6 {103, - 301, - 401, - 402, - 201, 101,-204} }
7 {- 103} \
Figure 4b,

pPartial solutions for the above illustration (Figure 43a)
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For problem (PRK) , a partial solution corresponding to set S5 at
node % , i.e , SQ contains xij variables assigned values of 1 or
0 . Yor simplicity in the computer program, an xij variable fixed at
1 is represented as (100 i + j) , whercas an xij variable fixed at

0 as - (100 i + 3) , e.g., Xgy © 1 and Xyp 7 0 are represented as

302 and ~ 302 respectively. Since branching is done on Xij variables,
it is necessary to make a distipnction between xij variables fixed at 1

due to the braaching rule and those fixed at 1 due to the other rules.
We make this distinction by underlining the positive number to represent

an Xij fixed at 1 due to the other rules. For example, 204, ~ 301,

103 represent, respectively, Koy = 1 due to the branching rule, X3 = 0

due to the branching rule or any other rule, and X13 = 1 due to a rule

other than the branching rule.
Figure 4bh shows the partial solutions Sl of the branch-and-bound

tree in Figure 4a.

lmplicit enumeration involves generating a sequence of partial
solutions and simultaneously considering all completions of each. For
our minimization problem, we start with an initial solution having a
very large value (infinity) as an initial upper bound. As the computations
proceed, teasible solutions (those satisfying the capacity constraints)
are discovered from time to time, and the best one yet found is retained

bound. 1t may happen that for a given partial solution Sl we can
determine a best completion of S, , i.e., a feasible completion that

L

minimizes the objective function value among all feasible completions

of Sl . If such a best feasible completion is better than the best
upper bound, then it replaces the latter. Or we may be able to determine
that S has no feasible completion better than tho incumbent. In either

2

case, we can fathom Sl . (Various situations of fathoming and back-
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PN e

tracking in our branch-and-bound procedure are described in the \
following discussion.) All completions of a fathomed partial solution ‘

Sl have been implicitly enumerated in the sense that they can be

excluded from further consideration (with the exception of the relevant

——t .

best feasible solution of SE if it has been retained as the best

I
i
}

upper bound).

In our branch-and-bound procedure, at any given node where we can
fathom Sg » we backtrack to the parent node and move to the right-hand
branch (if that branch has not already been explored) by fixing the

appropriate xij variable at 0 . However, if the right-hand branch

has already heen explored, we continue backtracking to a parent node where
we can move to a right-hand branch. For example, in Figure 4a, when
backtracking from node 3, we move to the parent rode 2, and to the right

to node 4 by setting X4 = 0 . However, when backtracking from node 6,

we move back to node 4, then back to node 2, then back to node 1, and to

the right to node 7 by setting x =0 .

13

On the other hand, if the partial solution Si cannot be fathomed,
we branch to the left and augment SQ by fixing 2 free variable xij at

1 (based on the branching rule), and then we try to fathom the resulting

partial solution. In addition to the one variable selected by the

branching rule, some other free xij variables can also be fixed at

0 or 1 according to the application of rules other than the branching
rule. Note that this can also happen when backtracking, i.e., when

S has been fathomed and we backtrack and move to the right by setting 7

pa
the appropriate xij variable to 0 .

Let us consider examples of both situations, i.e., when S2

has not been fathomed and when Sl has heen fathomed. In Figure 4a

we cannot fathom Sl (i.e., S at node 1), so we move to node 2 by




- 39 -

augmenting S, by tixing X3 F 1 based on the branching rule, and

by fixing = 0 and X41 T 0 based on the aoplication of the other

*31

rules. Similarly, we move from node 2 to node 3 by augmenting S2 by

s Bl

tixing X, = 1 . As an example of backtracking, wher we fathom S3 s

TIRIPN

we move back tuv the parent node 2, and to the right tu node 4, getting

a new partial solution S, by replacing X4 T 1 with X,y = 0, and
further augmenting it by fixing Xy = 0 and X1 T 1 based on the
&

application of the other rules.

Computationally, the storage and update of partial solution S)2
is easily accomplished by considering Figure 4b. If, at a given node,

the partial solution SK has not been fathomed, e.y., at node 4,

determine the next branching variable by using the braaching rule,

i.e., x,, , and augment SA by adding 204 as the last entry. Also,
augment SA with any other free xij variables, it appropriate,
depending on the application of the other rules. Now, consider the

case where the partial soiution S2 has been fathomed, e.g., at node 6,

and we backtrack; starting with the last entry in S, . we consider one

£
entry at a time, going backwards, until we find a posi'ive number which
is not underlined. In our example, it is 103. 1In other words, we must

branch to ti2 right by fixing X 0, i.e., we replace 103 with - 103

13
and we are at node 7, Should we find that we have no positive number,
the procedure terminates since we are back at the root node and the
right branch has already been explored. This happens when backtracking

from node 7.

In the branch-and-bound procedure we generate a sequence of

partial solutions as we move from one node to another. This sequence is

non-redundant in the senge that no completion of a partial solution

ever duplicates a completion of a previecus partial solution that has

bheen fathomed.

. - . . " S 37 M Rk B st AN s Y BRSSP - . . -,
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Since one of tlhe x | values, for each j , must be 1 , a total of
1j

. n . . ;

(2m~1) nodes are theoretically possible for complete enumeration.

However, most of the solutions may be infeasible¢ because of the capacity
constraints. The branch-and-bound procedure, thro.gh a judicious choice
of branching variables, and elimination of certain infeasible and non-
optimal assignmentg through various rules, turns out to be a practical
and computationally efficent algorithm. The various components of this
procedure are described next. Detailed procedural steps and the solution

of a test problem will be covered in Chapter 4.
3.1 Bounds

3.1.1 Lower Bound

At a given node £ in the branch-and-bound tree, a lower bound

(LOWB) is obtained by solving relaxed problem (PRQ) .

LOWB = Z(PRR) (40)

Recall that problem (PRQ) is very easy to solve by considering the

minimum Ciyp Over those j's for which X5 is n>t fixed at 1 ,

i.e., jeW , where W is the complement of W defined by expression (32).

Z(PR,) = L ¢ ., + & min ¢, , + FC, , (41)
% jew ije jeW i : ije L
(i,j)es
where cin is given by expression (38), i.e.,
= + 5 - 8
ije T2y L P O G Ty (38)
and the fixed cost (FCQ) is given by expression (39), i.e.,
= 39
FC2 by akl bk , (39)
k
where § is given by expression (34).

k&

T mes —— s
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Note that it none of the x,, variables is fixed at 1 , as is
1]
generally the case at the root node, then all ék, = 0 , and, therefore,
1
p

FCl =0, and Cijl = aij + bk rijk . Z(PRl) is, then, simply the

k=1
middle part of expression (41). We use the term "gencrally” because

it is possible that the capacity rule could forcz certain xij

variables to 1 (or 0) at the root nede, prior to solving the relaxed
problem (PRl)

3.1.2 Upper Bound

At any given node x , let X = {Xij} represent the solution of
problem (PRL) . It this solution is feasible for problem (P), i.e.,

if X satisfies the capacity constraints (5) or (5')

< s

ijk “ij5 = Sk Yk vk, (42)

]
—

where >0 5

45k Fij
X (43)

i if )
i

Mol T

X, .
1]

[t}

0 otherwise ,

then the value of problem (P) corresponding tc this solution

gives an upper bound (UPB):

UPB =

DL oa,,x,, +2 by , (44)
ij ij ij K k' k

X, .€X
1]

where Yy is defined by (43) .

3.1.3 Pest Upper Bourd

A current lovest upper bound is retained as the test upper bound

(8UB), the corresponding solution X representing the itacumbent solution.
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The branch-and-bound procedure is initiated by assuming a very large

value as the best upper bound, and is replaced by better (lower) values

as the procedure continues.

A positive fractional value € can be srecified if a sub-optimal

solution is acceptable. For example, for € = (0,001 , the resulting

" wisa W —

solution value is guaranteed to be within 0.1 percent of the optimal

l

solution value. When € is non-zero, the adjusted best upper bound (BUBS)
is defined as:

BUBS = BUB/(1 + €) . (45)

Obviously when € = 0 , BUBS = BUB .

3.2 Facility Usage Rule

This rule is used to identify facilities Jorced into usage at a

given node £ and hence fix corresponding free variales Y 2t 1.
For a partial solution S£ , define
djkl = dijk if  jew ,
(46)
= m%n dijk if  jew .
l —
(i,3)es

The facility usage rule states that for any facility k , where

is not already fixed at 1, if I d, >0, tuen facility k is

y
k ke
j 3

forced into usage and, therefore, should be fixed at 1

Yk

This rule is applied at every node prior to applying the capacity
rule. In other words, this rule is applicable to capacitated as well as

uncapacitated problems.

3.3 Capacity Rule

This rule is designed to "exclude" infeasible assignments prior i

to solving the relaxed problem (PRQ) . This is done by exploiting the
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refationship between the capacities required (dijk) and the capacities

available (s, ) Jlor a jiven partial solution of problem (P).

b
The capacity rule states that for a facility k and an activity

i ,"exclude" a free xij variable (i.e., fix it at 0) for which

—_— g‘ 7 3 (—

where Ejkz is defined by expression (46). The righiu~hand side of this

inequality (47), when positive, represents the available capacity at
facility k . The left-hand side shows, for a given j , the difference

between a dijk corresponding to a free Xij veriable and djkl .

If, for a specific dijk , this difference is more than the available

capacity, the corresponding free xij variable, if fixed at 1 , would

result in an infeasible solution. Thus, by looking ahead, we can exclude

such a free xij variable by assigning it a value of 0 .

Note that if the right-hand side of expression (47) is negative,
then any completion of such a partial solution will be infeasible and

we backtrack in our branch-and-bound procedure.

The capacity rule is applied to all the facilities by considering
one facility at a time. The cycle of examining all the facilities
continues until no more assignments can be excluded. During the course

of application of this rule, if all but one of the free xij variables

have been excluded (fixed at 0) for a given j , then that particular

xij variable is fixed at 1 because of constraints (2), i.e., each

activity j must be assigned to one and only one design i . The

partial solution is updated accordingly to reflect the x, variables

i)

fixed at 0 or 1 due to the application of the capacity rule.

The capacity constraints for an uncapacitated problem dare not

active. Hence, the capacity rule is useful only for capacitated problems.

T TP N T
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3.4 Branching Rule

This rule provides the choice of the xij variables on which to

branch. If the partial solution at a given node £ is not fathomed, we

branch further by fixing a free x variable at 1 and moving to the

ij
left branch node.

According to the branching rule the choice of the branching

variable depends on the values and 1is such that the corresponding

€18
xij , 1f perturbed, has the maximum impact on the ontimal value of
problem (PRE)

For a given j , define <y 52 ° the minimum permissible cin s

1
and Cizjl , the second smallest permissible Cij£ , 1.e.,
ciljz = min ©i50 for jeWw and (i,3)eS (48)
and cizjl = min oY) for jeWw and (i,j)eS (49)
i+il
For each jeW , define Djl = cizjl - cilj£ . (50)

Our branching rule states that a free xij varianle corresponding to
c, . such that D, is maximized over all j , is selected as the
11Jl bt

next branching variable and assigned a value of 1.

3.5 Bounding Rule

This rule is designed to "exclude'" certain non-optimal assignments.
These assignments cannot lead to an optimal soluticn as we branch from

one node to the next left branch node.

The bounding rule states that a free x variable should be

1]

excluded (by assigning it the value 0) for which




..J‘S_
(ciji - ey j,‘,) > (BUBS - LOWB) for jeW and (i,j)eS (51)
. i
where ci I BUBS, and LOWB are given by expressions (48), (45),
lk

and (40), respectively.

Thus, by looking ahead, we exclude those assignments which will
b ’ &

provide lower bounds higher than BUBS,

The bounding rule is applied to each jeﬁ just prior to selecting

the x,j variable for branching to the left.
i

As in the case of the capacity rule, if the bounding rule results

in excluding ({ixing at 0) all but one of the free xij variables for

a given jeW , then that particular x,i variable is fixed at 1 . Also
l—

the partial solution is updated accordingly to reflect the xij variables

tixed at 0 or 1 due to the application of the bounding rule.

3.6 Backtracking Rules

If a partial solution at a given node has beer tathomed, we back-
track. The backtracking rules are typical of a branch-and-bound procedure.
In addition, the application of the capacity rule and the bounding rule
can lead to bactracking. The criteria for backtracking include the

tollowing.

(a) When applying the capacity rule, if the available
capacity given by the right-hand side of inequality

(47) is negative, i.c., (sk ~ ; dij) < 9,

then backtrack.

(b) If LOWE ™ BUBS, then backtrack. Otherwise compute
UPB it the solution is feasible in problem (P).
Then update BUB and BUBS if UPB < BUB: and back-
track if LOWB = BUBS,

(¢) TIf further branching is not possible, ¢hen backtrack.
This can happen duc to the capacity rule, the bounding
rule, or the branching rule if the updated partial
solution is such that no further branching is possible,
i.e., xij variables are fixed at 1 fer all j , or

equivaleatly, W= ¢
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Whea ony ot the backtracking criteria apply, we backtrack to
the parent node and move to the right branch node (if the right branch

has not already been explored) by fixing the appropriate xij variable

at 0 . If the right branch has already been explured, we continue back-

tracking to a parent node where we can move to a right branch node.

The branch-and-bound procedure terminates when we backtrack to the

root node and find that the right branch node has already been explored.




4, COMPUTATIONAL STEPS AND THE COMPUTER PROGRAM

A computer program called ZIPCAP (an acronym for Zero-one Integer
Program for multiactivity multifacility Capacity-ionstrained Assignment

Problems) implementing the branch-and-bound methouology has been developed.

Detailed procedural steps and guidelines to usge the computer
program are described in a separate document [Chhabra and Soland (1380)]
titled "Program Description and User's Guide for 21PCAP--a Zero-one
Integer Program to solve multiactivity mulcifacility Capacity-constrained
Assignment Problems." Specifically, the document includes:

. Problem formulation (P’) and potential areas of
application

. Overall flow diagram and detailed procedural steps
for the computer program

. Program listing and dictionary of the symbolic names.
The listing includes extensive use of comment cards
to explain various computational steps.

. User information including
- schematic diagram of the deck structure,

~ detailed instructions for the job control (JCL)
cards, program parameter card, program options
card, and the various other input data cards.

. Three test problecms to demonstrate the use of the
program. The display includes coded input and
annotated outputs reflecting the use of selectad
program options.
As mentioned ear ler, ZIPCAP is primarily designed for capacitated
problems, However, uncapacitated problems can be solved as a special
case, and this is demonstrated by including an uncapacitated test

problem.
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Because of the extensive coverage of the program description and
user guidelines in the above document, this chapter provides only an over-
view of the computer program, including an overa’l flow diagram, and a
summary of the program options, in order to provide continuity in this
document. In addition, a step-by-step description oi a test problen is
presented to demonstrate the use of the various components of the branch-
and-bound methodology. The computer printout showing step-by-step details
is obtained by use of one of the program options. The use of this option
to display detailed steps in this document, in fact, complements the use

of the various options demonstrated in the other document.

4.1 The Program

Figure 5 presents a simplified flow diagram of the branch-and-
bound procedure. The major computational steps for the computer progranm
are numbered in circles. These steps are essentially based on the
methodology components described in the previous chapter. A step-by~step
description has been included in the other document [Chhabra and Soland
(1980 1.

The computer program ZIPCAP is written in F)RTRAN IV, and has
been developed and tested on an IBM 3031 at the George Washington
University. The program, comprising about 480 lines is currently
dimensioned for a maximum problem size of 35 designs (m;, 35 activities
(n) and 30 facilicies (p). The program size to execute a problem has
two components: one, due to the program itself, comprising 173 K bytes,
and the other aependent or the dimensions of the arrays given by the

following functional relationship.

f(n,a,p) = 4[(p+4)mn + (m+5)p+In] bytes

The computer program listed in the other document has since been
further improved. The basic improvement has been the addition of the
facility usage rule., This rule, as described in Chapter 3, is applied
both to capacitated and uncapacitated problems just before the applica~-
tion of the capacity rule. For completeness of this document, a revised

program listing is included in Appendix A. It may te mentioned that

e
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Simplified flow diagram for the branch-and-bound procedure
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the revised prugram solves the test problems inciuded in the other doucument
more efficiently -- in less time and in fewer noces (with an average
reduction in nodes of 31 percent)., The improvement in efficiency seems

to result from the "multiplicative" effect of the various rules. Another
improvement made is that the computer printout always displays th< node
number (IBNOD) at which the best upper bound changes (improves) and the
corresponding values of the best upper bound (BUB) and the adjusted best

upper bound (BLBS).

ZIPCAP provides numerous options to the program user. These options,

described in the other document, are summarized ia Table 3.

Option ICAPR, the capacity rule, is automatically skipped by the
program when solving an uncapacitated problem. Option ISTEP, the
intermediate steps' listing, even when skipped, provides information on
the total number of nodes explored. A summary listing provides necessary
information tc¢ construct the branch-and-bound tree, whereas a detailed
listing of rhe intermediate steps is useful when changing or debugging

the program.

Option EPS, the optimal/suboptimal solution, provides the
flexibility of obtaining a suboptimal value guaranteed to be within
a specified fraction of the optimal value. The resulting solution may
be suboptimal but could provide a considerable saving i1 terms of
exploring fewer nodes in comparison to those necessary for obtaining

an optimal sclut.ion.

Option ET, by providing important informatinn at a specified
elapsed time, is useful in a situation where the total time allocated
to solve a problem may not be sufficient and the program terminates
before verifying an optimal solution. The information provided by

this option includes an updated partial solution showing the xij

variables fixed at 0 or 1, at the current node being explored at
the specified tire ET. By looking at the first few variables displayed

in the partial sclution of the current node, it is possible to assess

the extent of the branch-and-bound trece explored until time ET. For

3
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example, in view of the terminology in Figure 4b /Chapter 3), if, at an

o o

arbitrary node, the first term of the partial solution is positive,

ey

i.e., the xij variable has value 1, then we are still in the left 1

half of the total branch-and~bound tree. If the first term is negative,

i.e., the xij variable has value 0, then we ar~ in the right half of

the total branch-and-bound tree and have explored half of the total

(theoretical) solutions corresponding to the lefi half of the tree.

If the first two terms are negative, i.e., the firvst two xij

variables have value 0, then one quarter of the total (theoretical)
solutions remain to be explored, since we are in the naxt right half of
the right half of the total branch-and-bound tree, xs illustrated in
Figure 6.

3
e

N
f Each ¢ egment represents 1/4
: of the total (theoretical)
% solutions

N ———- ——————————— '
' Each segment represents 1/2

_eft half of Right half of of total (theoretical)

the "total" the "total" s>lutions

branch-and- branch-and-

bound tree bound tree

Figure 6

) Illustration for estimating the extent of the branch-
and-bound tree explored
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Recall frow Chapter 3, that a total of (2m—1)n nodes are theoretically

possible. Thus, if the first g [g < (wm-1)n] terms at an arbitrary

node are negative, then theoretically about [(2w—l)n/2g] nodes remain

to be explored.

4.2 An Illustrative Example

We consider a capacitated test problem with five designs (m),
four activities (n), and eight facilities (p) to demonstrate the use

of the branch-and-bound procedure and the compute: pregram.

The computer printout for this problem showving step-by-step

details for a couple of nodes is presented in Appandix B.

As shown in the beginning of the printout, the options selected
are:

. IINPT

1, i.e., list the input data

. ICAPR =1, i.e., use the capacity rule

. ISTEP = 2, i.e., list detailed intermediate steps
. IUNCAP = 1, since this is a capacitated problem

. EPS

0.0 implying that an optimal solution is desired

ET = 0.0 since a detailed listing of intermediate steps
will be available.

Following the listing of the options, input data listed for the problem

include variable costs ai_ , fixed costs bk , available capacities
3

s, and caprcities required dijk . The e values are generated

by the computer program.

The computer program follows the procedural steps marked in the
flow diagram presented in Figure 5. These steps, 1long with the
relevant terminology used in the computer printout, are described below
for a couple of nodes, followed by a complete branch-ana-bound tree for
this problem. As mentioned earlier, a dictionary of the symbolic names

used in the computer program is included in the other document.




Node 1

Step 1: Initialize. 2

Initialize BUB 9999999.0, and since EPS = 0.0, BUBS = BUB.
Also § = ¢ and W= ¢ . 1In the computer p<intout, vector
FIX(J) represents the sec W, and matrix CX(I,J) -epresents both, fixed

and free Xij variables. In the CX(I,J) matrix, an Xij variable fixed

at 1 or 0 is represented as 1 or 2, respectively, asnd a free Xij variable
is represented by the value 9. Initially, all the x{j variables are free
as shown by natrix CX(I,J) in the printout.

Step 2: Apply the facility usage rule and tlie capacity rule for
k=1,2,...,8

In the printout, MIND(J) represents dij dcefined by expression (46),

and MINSD represents L ajkg . As shown in the printoit, MINSD is O for

k=1,2,...,8 , and so the facility usage rule does not ~“orce any facilities
into usage; and as shown by matrix CX(I1,J) for k=1,2,...8 , the capacity

rule does not fix any xij variables.

Step 3: Solve the relaxed problem (PRl) .
In the printout FLB(K) represents Gk2 , giveu by expression (34),

for computing FCQ , and C(I,J) represents Cijl defined by expression

(33). Being at the root node, £ = 1. Further the solution of problem

(PR,) , i.e., X = {x,,} is shown in the printout by SOLX(J) which
L i]

for (PRl) is X = {x[‘] = x/42 = X23 = x[“ﬁ = l} .

Step 4: Compute the lower bound.

The expressions (40) and (41), i.e.,

LOWB = z(mi) (40)
= Y ¢ + N min ¢ + FC
v » ‘_ . v 2 (‘
jew Y el 4 i (41)

(i,j)eS
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are represented in the printout as

LOWB = MINSC + FC
= 729839.3125 + 0 = 729839.3125

Step 5: Compare LOWB with BUBS.
Since LOWB < BUBS, go to Step 6

Step 6: Check if solution X is feasible in problem (P),

expression (42) is satisfied.

i.e.,

. . < k 42
ik xij < sy Y (42)

In the printout, NSUMD represents the left-hand side of this inequality,

and for each k , the capacity constraints are sa+-isfied.
Step 7: Compute the upper bound.

UPB is given by expression (44), i.e.,
UPB =3 T a,, x,.+L by (44)
i ij 7ij K k’k

In the printout, the corresponding expression is represented as

UPB

NSUMA + FCUB
678,502 + 101,000 = 779502.0 .

Step 8: Compare UPB with BUB.
Since UPB < BUB, go to Step 9.

Step 9: Set BUB = 779502.0 . Since EPS = 0.0, BURS = BUB.
Since LOWB < BUBS, go to Step 10.

Step 10: Left branching is possible since W = ¢ as showm by

vector FIX(J); go to Step 1l.
Step 11: Apply the bounding rule and the branching rule.

According to our bounding rule, a free x variable is excluded

ij
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(fixed at 0) for which

(Cijsz - Cilji) > (BUBS - LOWB) for jeW and (i,j)eS (51)
For Xyq s (210,381.4375-145,201.5) > (779,502.0-723,839.3125).
This also holds for x33 and X1, 0 i.e., the bounding rule results
in fixing x13 R x33 , and X4 at 0. This is shown in the printout

by matrix CX(I,J) where the corresponding variables have been assigned

the value 2 because of the bounding rule.
The branching rule directs us to select a free xij variable

corresponding to Ciljﬁ for which Djyv = Cizjﬂ - Ciljﬁ is maximized

and D,

3% are represented

over all j . 1In the printout, Cizji s cilj2 s

by NMINC(J), MINC(J) and DIFBR(J), respectively. Since D21 is the maxi-

mum, X is selected as the next left branching variable. This is shown

42

in the printout by BR1 and is represented as (100 i + 1) e.g., 402 .
Using the terminology employed in Figures &4a anc 4b, the xij

variables fixed at 0 or 1 in the partial solution Sl will be showm

as = {- 103, -~ 303, - 104, 402} . 1In the computer printout, vector

S
1
STX displays the xij variables fixed at 0 or 1. The representation

of the variables is, however, somewhat different. An xij variable

fixed at 0, due to any rule, is shown as - (100 i + j) - 1,000,000,

€.Bes X3 is shown as ~ 1,000,103; an xij variable ixed at 1 due

to the branching rule is represented as (100 i + j), e.g., as 402;

*42
and an xij variable fixed at 1 due to a rule other than the branching
rule is shown as (100 i + j)+ 1,000,000, e.g., X5a is represented as
1,000, 203.

In the printout, vector STX represents updated partial solution

- FERCTY WY SV U S SRV v | 1



We now move to Node 2.
Node 2

The updated matrix CX{(I,J) and vector FIX(J) a.e displayed in the

printout.

Step 2: Apply the facility usage rule and the capacity rule for
k=1,2,...,8 .

As shown in the printout, MINSD (representing ¥ ajkz) , being
h|
positive for 1=1,2,3,4, and 5 , these facilities are forced into

usage. Further, for k=4 , expression (47) holds for X3, and X5y o
i.e.,

(180~0) > (200-30), and

(180-0) > (200-30), respectively.

As shown by matrix CX(I,J) in the printout, these two variables are

excluded (fixed at 0) by the capacity rule. Since the capacity rule

results in fixing at least one variable in the first cycle, another
cycle is repeated as displayed in the printout. The second cycle

does not fix any more variables. Vector STX is uplated accordingly.
Step 3: Solve the relaxed problem (PRZ) .

8, , represented by FLB(K) , ¢ represented by matrix C(I1,J),

k2
and solution ¥ represented by SOLX(J) are displayed in the printout.

ijz

Step 4: Compute LOWB.

LOWB, from the printout, is equal to 749011 4375.
Step 5: Compare LOWB with BUBS.

Since LOWB < BUBS, go to Step 6.
Step 6: Check if solution X is feasible in (P).

In the printout, for k=4 , NSUMD = 290 > 200 , i.e., expression

(42) is not satisfied, and we go to Step 10.

Step 10: As shown by vector FIX(J), left bran:hing is possible
and we go to Step 11.
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Step 11: Apply the bounding rule and the branching rule.

As displayed by matrix CX(I,J) in the printout, the bounding

rule results in fixing X1 and Xy, at 0. Now, for j=4 , except i
for Xpq 0 all the xij variables are fixed at 0; therefore X4t 0 4
is fixed at 1. This is reflected by matrix CX(I.J), and vector FIX(J). .
Vector STX is updated accordingly. %

The branching rule selects x41 as the next branching variable. §

This is shown in the printout by BR1l, and vector STX is updated

accordingly.
We now nove to Node 3. j
Node 3:
The updated matrix CX(I,J) and vector FIX(J) are displayed in the

printout.

a0,

Step 2: Apply the facility usage rule and the capacity rule for
k=1,2,...,8 .

The facility usage rule forces facilities 1 to 5, and 8 into

usage, For k=4 , the capacity rule excludes X435 and Xgq » i.e.,
fixes them at 0; and for j=3 , all but Xpq beirg fixed at O, X53

is fixed at 1. This 1s displayed in the printout hy matrix CX(I,J)

and vector FIX(J). Vector STX is updated accordingly.
Although the capacity rule has fixed at least ona xij variable

during the initial cycle, another cycle is not necessary, as displayed g

by vector FIX(J) which represents set W, since we have an xij variable
fixed at 1 for each of the n columns (activities).

Step 3: Solve the relaxed problem (PR3) .

SOLX(J) displays the solution for the relaxed problem.

Step 4: Compute LOWR.

LOWB, shown in the printout, is equal to 779502.0 .
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Step 5: Compare LOWB with BUBS.
Since LOWB = BUBS, go to Step 12.

Step 12: Backtrack.

We backtrack by moving to the parent Node 2, ard branching to the

-

right by setting x,, = 0 (since the right branch has not yet been explored).

41
In the printout, this is accomplished by observing the last entry in vector
STX, and moving backwards, one entry at a time, until we find a positive

entry without 1,000,000 added to it. The corresponding xij variable

PP

is fixed at 0, and we move to the right branch node. Matrix CX(I,J), vecter
FIX(J) and vector STX are updated accordingly. As disnlayed in the print-

out, entry 40l in vector STX is such an entry, and variable is fixed

c el daad

*41
at O for brancking to the right. This is shown in the printout by BRO as 401.

The updated vector STX is also displayed.
We now move to Node 4.
Node 4

The updated matrix CX(I,J) and vector FIX(J) are displayed in the

printout.

Step 2: Apply the facility usage rule and the capacity rule for
k=1,2,...,8 .

As displayed in the printout, for k=4, MINSD=230 > 200 , i.e.,

jkl) < 0, and

according to our backtracking rules, we backtrack, i.e., go to Step 12.

the right-hand side of inequality (47), (sk -Id
J

Step 12:  Backtrack.

We backtrack to the parent Node 2, and since the right-hand branch
has alrcady beer explored, backtrack to Node 1 and to the right-hand

branch by fixing to 0 . This is shown in the printout by BRO as 402,

%42

and vector STX is updated accordingly.

We now move to the next node, i.e., Node 5.
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Branch-and-Bound Trece

We continue the branch-and-bound procedure from one node to
another until we backtrack to theroot node and find that the right
branch has already been explored. The procedure, then, terminates and
the solution corresponding to the best upper bound is the optimal solu-

tion.

For this problem, a total of nine nodes are explored and the

optimal value equals 779502.0. The optimal solution is X1= X0

Xgq = X4 = 1 and Yy S Yy T Y3 Y, = Yo = Vg = 1 . This is

displayed in the computer printout on the last page of Appendix B.

Figure 7a presents the branch-and-bound tree fcr this problem,

and shows the node numbers, the bounds, and the braaching variables.

In order to demonstrate the role of the cepacity rule and the

bounding rule, Figure 7b displays the xij variatles fixed as 0 or 1
by these rules for this test problem.

The cumulative effect of the various rules, including the facility
usage rule, the capacity rule, and the bounding rule, iiakes the branch-
and-bound procedure quite efficient, Further, the sto-age and updating

of the xij variables fixed at 0 or 1 is done in a manner that makes

utmost use of tuie relevant information at the preceding node.
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LOWB = 729839.3 :

= 779502.0 = BUB {

- — i

X, =L X, 20 g
1

Lows = 749011.4(2) = 747995.3 x

—

771864.9
= 857825.0

LOWB = 779502.0 e LOWB = 793044.0

LowB = 807947.0 (7)

Figure 7a

Branch-and-bound tree for a test problem
(Test Problem with m=5, n=4, and p=8)

Node Capacity Rule Bounding Rule
1 X1370 5 %3370 5 x,=0
2 x3a=0 ’ x54=0 x21=0 s x24=0 , x4A=l
3 ] x43=0 , x53=0 , x23=l
5 x43=0 R x34=0
[¢) B x11=0 . x21=0 R x31=0 , x22=0 , x54=0
8 x44=l
‘; x53=l, x44=0, x54=0. x24=L
Figure 7b

Varianles tixed by the capacity rule and the bounding rule




5. COMPUTATIONAL TEST RESULTS

The computer program ZIPCAP has been tested on several problems.
Although primarily designed for capacitated problems (i.e., where the
capacity constraints are active), the program can alsc be used for solving
uncapacitated problems as a special case. Since the dita available for
capacitated problems were limited, some uncapacitatxzd problems were also
considered fo. testing the program. (Most of the data were furnished by
Professor Pinkur and are related to his work on multi-echelon inventory

systems.)

Table 4 presents the test results of ZIPCAF. 1In order to verify
the optimal solutions, the test problems were also sclved by using the

0-1 integer programming code RIP30C [Geoffrion and Nelson (1968)].

In the table, the problem size shows the number of designs (m),
activities (n). and facilities (p). This is equivalent to solving a
problem having mnt+p variables and ntp constraints. The elapsed time
represents the time in seconds to solve the problea, excluding the time
to read and write the input and to write the outpu.:. The total number

of nodes explored by ZIPCAP for a specified set of cptions is also shown.

Both RIP30C and ZIPCAP were run on an IBM 3031 at The George
Washington University. The last problem in the table wes not run using
RIP30C because of the code's capacity limitation to $C variables and

50 constraints.

The test problem with mw=3 , n=4 , and p=5 has three variations,
using different values for the facility capacities. The data for the

variable costs ag: s fixed cost bk , and the capacity requirements

d are given in the other document, i.e., Chhabra and Soland (1980).

ijk
For the test problem with m=5 , n=4 , and p=8 . runs 4a, 4b,

and 4c are the same except for ne different intermediate steps' option
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(ISTEP) and this results in slight differences in the time taken to solve
the problem. Runs 4a and 4d differ in that 4d does n>t use the capacity
rule; the resulting difference in the total number of nodes explored

to reach the optimal value points to the effectiveness of the capacity

rule in conjun-:tion with the bounding rule. f

Run 5 shows the results for an uncapacitated problem with )

w=10 , n=8 , and p=8 . Option ICAPR is not ustd since the capacity

rule is not useful for an uncapacitated problem.

Another uacapacitated problem with m=10 , n=30 , and p=8 is
solved in runs 6a and 6b. In run 6a, the epsilon value (EPS) is
specified as 0.002. The solution value found by exploring 125 nodes
may be suboptimal but is guaranteed to be within +0.2 percent of the
optimal solution value. Run 6b is made with an epsilon value (EPS)
of 0.0, and the optimal solution value is found in 277 nodes. A comparison
of runs 6a and 6b shows that the number of nodes :s less than half for a
solution value that may be suboptimal but very close to the optimal solu-
tion value as compared to the number of nodes for an ortimal solution

value.

In general, a small difference between a solution value that may

be suboptimal and the optimal solution value, translates into a
significant difference in the corresponding number of nodes and the

solution time required.




6. FURTHER CONSIDERATIONS

1t was mentioned in Chapter 2 that it is possible to consider
alternative formulations of problem (P), and also to cimsider choices of

Lagrange multipliers other than vk = bk with the purnose of obtaining

"tighter" bounds which, in turn, would further improve the efficiency
of the branch~and-bound procedure. These aspects will be discussed in

this Chapter.

6.1 Alternative Formulations

Problem (P) can be reformulated by adding additional constraints
such that the corresponding Lagrangian relaxation(s), if solved, would
provide "tighter” bounds. If such a relaxation does not possess the
integrality property, then it provides an equal or better bound compared

to that from an LP relaxation, as mentioned in Chapter 2,

Two alternative formulations of problem (P), along with their
Lagrangian relaxations, are given below.
6.1.1 Alternative Formulation 1

Formulation (APl) is obtained by adding the constraints

e xij §-¥k » for all 1i,j, and k , to problem (P, i.e.,

Minimize LI a,,x,,+ZIL by (4)
i ij “1ij K k' k
subject to Z X135 " 1 Vi (2)

(APL)




- 66 -

Since e = 1 or 0, each constraint of (52) is either equivalent to

ik
ik = 1) or else is redundant (if e = 0). Problem (API)

thus has, at must, mnp additional constraints reiative to problem (P).

(1f e

X <

1j Yk

Two Lagrangian relaxations are now considered for problem (APl).

The first Lagrangian relaxation is obtained with respect to

constraints (5') by introducing nonnegative Lagrange multipliers

vy > 0 to get
Minimize IZa,, x,,+Xby -Lv (y -z r,, x,,)
1 i3 “ij K k'k K k. k i ijk "ij
subject to (2), (52), and (6), or equivalently,
Minimize I I x,, (a +Zv, r,, ) - Ly (v -b ) (53)
1j ij ij X k ijk K k \'k k
subject to Ix,, =1 Vi (2)
1 1
(ALRlV)
Xyg 0 Ve T Oorl Vi,j,k (6)

Another Lagrangian relaxation of problem (AP1l) is obtained with

respect to constraints (5') and (52) by introducing nonregative Lagrange

multipliers Vi and )\ijk , respectively, to get

ize T “
Minimiz Lz aij xij + bkyk A
§
‘
b

-LILZIA,, y, — e, X, 3
ijki_]k(k ik 1j) :

subject to (2) and (6), or equivalently,
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Minimize LI x, . (a,, +Lv r.. +Le .. )
ij ij ij X k ijk K 2k ijk
- Xy v + 222 - b 54
(ALRL ) k(k g j ik ) 4
v, A
Subject to Ix,, =1 vi (2)
1]
i
xij - A Oorl Vi,j,x« (6)

For this problem, the solution is:

y, =0 if (vk+§;>\ijk—bk>i 0,
J
=1 Iif (v +Z X -b>> 0,
kg Tk )=
and xij =1 4if i minimizes (a&j + i Vi rﬁjk + i e&k A&Jk)

over £ .

We need good choices of Lagrange multipliers Vi with which to
solve problem (ALRlv), and of Lagrange multipliers Vi and Xijk with
which to solve problem (ALRlV A)' Problem (ALRlV) dres not possess the

integrality property, thus offering the hope of a tignt bound, but has

more constraints and is difficult to solve compared to problem (ALRIv \)
)

which, on the other hand, involves more Lagrange multip.iers.

6.1.2 Alternative Formulation 2

Another formulation of problem (P) is similar to problem (APl)

except for a modification in constraints (5'), i.e.,

- i

e lo s o

A o ot = 3 e on B

i
|
l
!
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Minimize Lla,, x,,+Zby (4)
ij i 43 0 k' k
Subject to Lx,,=1 v (2)
i N
9 tlr,.. x,, < 1 Vk (55)
(AP2) i ijk Tij —
i Xgy S Y YRR (52)
= .)"k
iy Y 0 or 1l Vi,j (6)

A Lagrangian relaxation with respect to constrain.s (55) and (52) is

obtained by introducing nonnegative Lagrange multupliers Vi and xijk

to get
Minimize ZXa,, x,, +XZ by
13 ij " ij X k' k
-Lv (l IZr,, X ,)
Lk {3 kS
-z A, y e,.. X,.
i3k ijk ( k ik 1_]]
Subject to (2) and (6), or equivalently,
i + + I
Minimize i § xij (aij i Vi rijk L e Aijk)
+Ly (b LA ) Tv (56)
X k k ij ijk X k
(ALR2 A)
! Subject to Ix,, =1 v (2)
i Y
. o (6)
xjj I 0or1l Vi,ik
For this problem, the solution is:
y, =0 if L I Ai < b,
k { ] ik k
=1 4f LY A > b,
13 H

A i

7 amnillaan..
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Vi r&jk + ; e&k A&jk )over L.

and x,, =1 1if i minimizes fa , +
ij Ri

L
k
Here again, we need good choices of the Lagraage multipliers v

and Aijk with which to solve problem (ALRZV,A)'

6.1.3 Choice of Lagrange Multipliers

Each of the relaxations (ALRlv A) and (ALRZv A) involves p A

Lagrange multipliers and wmnp Xi' multipliers. I1f we have good choices

ik
of these multipliers, the resulting solutions of the relaxed problems
should provide "tighter" bounds (because of the additional constraints)

than the bound from relaxation (LRV). Since relaxa:ions (ALRlv A) and
b ]
(ALRZv A) are similar to a great extent, only the relaxation (ALRlv A)
bl ]
will be considered for further discussion.

By looking at expression (54) of the formulation (ALRlv A)’ a
?

meaningful choice of the Lagrange multipliers Vi and ;ijk appears
to follow from setcing
v +ZZ% X, =Db Yk (57)

so that each of the Aijk can be chosen as

b, - v

k k
A = if e,, =1,
ijk nfZ eik) ik

i (58)

0 otherwise
" The solution for problem (ALRlv A) is then to select, from each column j ,
bd

i i + +
an x variable which minimizes ({gj % vk ?&jk JPRIE

© A over £ .,
1j k ) B

T
k

Arbitrary values were considered for the vk (e.g., vk equal to
3/4 b

1/2 bk , 1l/4 bk , and 0) , the xijk were then computed from

k ?

»
‘
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(58), and the test problem with three designs (m), four activities (n)
and five facilities (p) was solved. Three cases with different capacities

Sy (as specified in Chapter 5, Table 4) were tried for the solutions at

the initial node. The results, however, were not conc'usive in terms of

providing a meaningful choice of the Lagrange multirliers Vi (and of

the Aijk)

Since the relaxation (ALRlv X) possesses the integrality property,
14

a choice of the multipliers as the optimal values of the dual variables

of the corresponding linear programming problem woula provide a solution
as good as the LP solution (as stated in Chapter 2). W= do not propose to
solve linear programs as a part of our branch-and-bound methodology.
However, we have made some LP runs, basically to see if the results provide
insight leading co the choice of the Lagrange multipliers, and also to

see 1if the resulting LP solutions are 'close" to tbhz integer solutions.

These results are given below.

The LP formulation (APl) corresponding to probiem (APl) is:

- + 5
Minimize ; ; aij xij bkyk (4)

ij k
Subject to h) xij =1 Vi (2)

i
Z X . ?
(APL)

ek xij f-yk Vi i,k (52)
21 Vk (15)
xij , yk >0 vi,j,k (16)

The constraints Xij < 1 are implicit in constraings (2).

Problem (APl) was solved for the test problem wich m=3, =4, and

p=5 and three different cases for the capacities Sy (as specified in
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Chapter 5, Table 4). Each case was solved using the IMSL (International
Mathematical and 3tatistical Library) Code ZX3LP on an IBM 3031 at The

George Washington University.

Note that the formulation (KFE) has up to mnp moure constraints than
the LP formulation (P) given in Chapter 2. For our test problem, this
translates into solving a problem of 17 variables and 50 constraints
corresponding to formulation (XFI) as against 17 variables and 14 con-

straints corresponding to formulation (5).

Table 5 lists the solution values for each of the three cases with
different capacities for the small problem with thrve designs, four activi-
ties and five facilities. The solutions to problem: (P) and (AP1),
obtained from ZX3LP, show the optimal solution values, the optimal values

of the variables xij and Y o and the optimal values cof the dual
variables corresponding to the Lagrangian relaxations (LRV) and (ALRlv >\),
’

i.e., Vi associated with the capacity constraints (J') and kijk

associated with the constraints (52). The table also shows Z(P), and

the Lagrangian solution value Z(LRV) obtained by setting vy = bk for

all k at the root node, 1i.e., Z(LRb).

As expected, the LP solutions for each of the three cases show
Z(APl) to be considerably higher than Z(f), and closer to Z(P), thereby

providing a tighter bound. As for the Lagrange multipliers Vi and

Aijk , the following relationships are observed.

)iZ Aijk < bk Vk , and
J

>
Vi + i ? Aijk > bk Yk

Also, for v, =0, XL A,,, = b , and
1
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Although the relationship among various Aijk values is not apparent,
the above observations are useful in further exploring some good choices s

of the Lagrange multipliers for the relaxation (AI.Rlv A)’ as discussed

ettt

earlier.

As for the "closeness" of the LP solution to that of the integer

. v % et diPuan,

solution, most of the solution values x,j and Yy of problem (AP1)
i

are fractional, and their rounding off to 0 or 1 does not, in general,

seem to correspond to the optimal integer solution values xij and

Y of problem (P).

Table 5 aiso displays Z(LRb) at the root node for each of the

three cases. For s, = 3000 , Z(LR,) = Z(P) , and the Lagrange multi-

pliers, as reflected by the values of the dual variables of problem (P),

are equal ro bk for all k . This is expected from Theorem 3 and our

discussion of the integrality property in Chapter 2. Further, the dual
= 7C0 Vk , and

variables of (ﬁ) for the first two cases (i.e., Sy

S, = 400,...) have values Vi z_bk from Theorem 1.
The Z(LRb) values in Table 5, however, take no consideration of
the capacity rule and/or the facility usage rule of our branch-and-

bound procedure. These rules, by fixing certain xij values to 0

or 1, and by forcing certain facilities into the solutioun, provide
an improved lower bound. As per our branch-and-bound procedure the
improved lower bound at the root node is obtained by solving problem

(PRl). For example, for = 700 ¥k, the values of Z(LRb) and Z(PRl)

Sk
are shown in Figure 8. The figure also shows the values of Z(P),

Z(APl), and Z(P). The branch-and~bound procedure rules provide an

improved value of the lower bound Z(PRl) compared to Z(P). It appears

that some good values of the Lagrange multipliers of the relaxation

(ALRlv A)’ if found, could, in conjunction with these rules, provide

significant improvement over Z(KFT), and without the need to solve an

LP problem.
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37,774 z(p)
37,678 b o e o — Z(AP1)

37,164 _....._..._...._..._....._.Z(PRl)

36,688 | o= = m e om = = = o = = Z(P)

36,505 _.._.._.._._.._._._Z(LRb) {infeasible in problem (P)]

L

Figure 8

Lagrangian and other solution values for a test problem

(Test problem with m=3, n=4, p=5, and G 700 Vk)
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6.2 Subgradient Method

It was mentioned in Chapter 2 that setting the Lugrange multipliers

vy equal to bk for all k provides a good starting woint in solving
the Lagrangian relaxation (LRV) of problem (P). From Theorem 3, this

choice is optimal (in terms of providing the tightest lower bound) if
the resulting solution is feasible in problem (P). In other cases,
i.e., where the resulting solution is not feasible ir problem (P), this
choice is generally not optimal and it is possible t» tighten the bounds

by considering values of Ve 2 bk (from Theorem 1). Ore method that

seens useful in providing such a choice is the subgradient method.

The subyradient method is an adaptation of the gradient method
in which gradients are replaced by subgradients. Through a heuristic
choice of the step-size, this method has been successfully used to
provide improved bounds and sometimes optimal solutions [for details
see Held, Wolfe, ard Crowder (1974), Fisher (1978), and Christofides
(1980)]. The fundamental theoretical result is that

g
Z(LRvg)_.Z(D) if t8»0 and I t9—p> as g—ww
q=0

where t® is the positive step-size t for the g<-h iteration,

and Z(LRvg) is the solution value of the relaxed pro>blem (LRV) using

Vi values obtained at the gth iteration.

In the case of problem (P), the step-size tg+l Yor iteration

g + 1, given that we have a solution of (LRvg), is given by

gtl * _ g
g+ A2 - 2R B)) ' (59)
2
Ay 8-zz2r,,, x,.8]
W e T TR Ty

where Ag+l is a scalar and generally between 0 and 2, and

* :
Z 1is an upper bound on Z(LRVg), frequently obtained by applying

a heuristic to solve problem (P).
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v e ! . 2 gtl
Given the vector of multipliers v® | v is generated by
7+l g g+l g | g
Vi Vi t (yk i % rijk xij . (60)
J
g+l

where we enforce v > b in our case of problem (P) (because of

k ~ "k
Theorem 1).

Justification for these rules and computationai results of
applications of the subgradient method are given in Held et al (1974).
The scalar A is generally initiated by setting Xl = 2 and halving
subsequent A's whenever the resulting solution value has failed to
increase in some fixed number of iterations. This rule has performed

well empirically [Held et al (1974) and Fisher (1278)].

For the test problem with three designs, four activities, five

facilities, and the capacities s, = 400, 5, = 400, = 1000,

1 33
S, = 400, 8¢ = 400, the Lagrangian solution obtained .1t the root node

by setting Vk = bk for all k , i.e., the solution to problem (PRl)

is infeasible ir problem (P), i.e., it violates the capacity constraints.
It seems that the subgradient method could be usetul in considering

vk > bk with the ultimate purpose of obtaining a tighter lower bound,

and, depending on the revised solution(s), possible improvement in the
best upper bourd. Another possiblity could be to first arbitrarily

increase the relevant values by a small percentage of the b

Yk k

valuces and then solve problem (LRv)’ hopefully to improve the lower

bound; and thereafter to use the subgradient methorld for obtaining

subsequent values of v, , and tightening the bounds,

k

Both of the areas discussed above, i.e¢., the consideration of
alternative formulations of problem (P), and the application of the
subpradient method, and their combination, seem uscful for continued
research in terms of further improving the branch-ani-bound procedure

for solving rthe multiactivity multifacility capacity-constrained 0-1

assiygnment problems,

oy
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APPENDIX A

ZIPCAP LISTING (REVISED)
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FORTRAN IV G LEVEL

Vool

C002
0003
0004
0005

0006
00V7

0008
0009

0010
0011

0012
oul3

001«

0015
0Cls
ov17
o018
0019
0020
vo21
00<2
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21 MA IN DATE = 80315 11707724
ZIPCAPy A ZERO=~ONE INTEGER PFROGRAM IS DESIGNED 00000010
TO SOLVE MULTIACTIVITY MULTIFACILITY CAPACITY= 00000015
CONSTRAINED PROBLEMS HAVING VARIABLE AND FIXED 00000020
COSTS. IT ALSO SOLVES UNCAI'ACITATED PROBLEMS AS A 00000030
SPECIAL CASE 00000040
INTEGER D(35435,30)y A(35,35})y CX{35,35), E(35,30), 00000050
Bi30)s BSOLX(35), BSOLY(30), FLB(30),FIX(35),FIXI(35), 00000060
FUB(301}, S{30), SOLX(35), STX(X22F) 00000070
REAL MINC({35), NMINC(35) 00000080
DIMENSION C(35,35), DIFBR({35), KT2(35),y MIND(33) 00000090
-INTEGER 8RO, BR1l, FC, FCU8, P 00000110
REAL LOWB, MAXDIF, MINSC 00000120
seasnnandveesnOPTIONS AVAILABLE: IINPT, ICAPR, ISTEP, IUNCAP,EPS 00000130
TINPT=1 IF INPUT LISTING DESIXED: O OTHERWISE 00000140
ICAPR=1 IF CAPACITY RULE TO BE USED; O OTHERWISE 00000150
ISTEP=0 IF LISTING OF INTERMEOIATE STEPS 00000160
NOT DESIRED. ISTEP=1 IF SUMMARY OF BRANCH & 00000170
BOUND NODES DESIRED. ISTEP=2 IF DETAILED 00000180
LISTING OF INTERMEDIATE STEP®S DESIRED. 00000190
IUNCAP=1 IF SOLVING AN UNCA{'ACITATED PROBLEM, 00000220
0 OTHERWISE. 00000210
EPS= A FRACTIONAL VALUE IF LUBNPTIMAL 00000220
SOLUTION DESIREDy EoGey EPSILUN AS 0.005 00000230
IMPLIES SOLUTION TO BE WITHIN ~Ce5 PERCENT 00020240
OF THE OPTIMAL SOLUTION, EPS=0.0 IF CPTIMAL 00000250
SOLUTION DESIRED. 00000253
ET= ELAPSED VTIME IN SECONDS, 1F SPECIFIED, AT 00000256
WHICH THE NODE AND BOUNDS RELATED INFORMATION 00000260
IS PRINTED., THIS IS USEFUL IN A SITUATION IF 00000263
ISTEP=0 ANC THE PROGRAM TERMINATES BEFORE 00000266
REACHING THE FINAL SOLUTION. 00000270
335 23553388 8READ INPUT DATASSES SRS RBSEI IR SR EESRECRE S ES 00000273
READ 10, IINPT, ICAPR, ]STEP, IUNCAP, EPS, ET 00000280
FORMAT {411y F6.59 F10.3) 00000290
M= NUMBER OF DESIGNS 00000300
N= NUMBER OF ACTIVITIES 0000G310
P= NUMBER OF FACILITIES 00000320
READ 20,MyNyP 00000330
FORMAT (315) 00000340
All,J): VARIABLE COST MATRIX 000230350
READ 30y ({A(lsJ}y 1=1,M)eJ=1,4N]} 00000360
FORMAT {(8110) 00000370
B(k): FIXED COST V_CTOR 00000380
READ 30, {(B(K),K=1,P) 00000340
IF (IUNCAP.EQ.1) GO TO 40 00000400
S{K): CAPACITY LIMIT VECTOR; REQUIRED ONLY 0003010
IF 1UNCAP=0 00000420
READ 10y (SIK)yK=1,P) 00000430
D(lyJyK): CAPACITY USAGE MATRIX; REQUIRED 0000C««0
ONLY IF IUNCAP=Q 0Q00045C
00 32 K=1,P 00000460
READ 30¢((0(TsJdsK)y I=14M)yd=1,N) 0000VV&T70
CONTINUE 00000«80
00 37 K=1,°P 00000&9C
00 37 I=1,M ocoo0Cs%00
If (O(I414K).EQ.0) GO TG 35 00000510
E(l,x)=1 00000520
GG 10 37 000005210




AD=A102 583 GEORGE WASHINGTON UNIV WASHINGTON DC PROGRAM IN LOGISTICS F/6 12/1 !
SOLVING HULTIACTIVITY MULTIFACILITY CAPAC!TY-CONSTRA!NED 0=1 lS-ETC(U)
MAY 81 K L CHHABI N00014=80=C~01 6
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l
0023 3s ELL4KI=0 00000540
0024 37 CONTINUE 00000550
: 0025 GO TO 90 00000560 :
C E(I,K)2 DESIGN=FACILITY MATRIX; REQUIRED ONLY 00000570 .
c 1F TUNCAP=] 00000580 :
C 0026 40 READ 45, ({EC(1,X)oIx1,M),K51,P} 00000590 K
0027 45 FORMAT (80I1) 00000600 ‘1
0028 00 80 K=1,P 00000610
0o 0029 SIK)=N 00000620 1
0030 DO 75 I=zl,M 00000630
0031 IF (E(1,K)}.EQ.1l) GO TO 65 00000640
) 0032 DO 60 J=1,N 00000650 1
0033 DtI,JeK)=0 00000660
0034 60 CONTINUE 00000670
(o) 0035 G0 TO 75 00000680
0036 65 DO 70 J=1,N 00000690 "
0037 DlI,JsK)=1 00000700 A
o 0038 . 70 CONTINUE 00000710
0039 75 CONTINUE 00000720 i
0040 80 CONTINUE 00000730
o [ S8 5455822888 PRINT INPUT DATASSH 35582888558 2065808388036S62 S 00000740 1
0041 90 PRINT 95, IINPT, ICAPR, ISTEP, IUNCAP, EPS, ET 00000750
0042 95 FORMAT ( *1*,* OPTIONS SELECTED : IINPT=?,11, 00000760
(v} 1 * ICAPR=%,11, * [ISTEP=',Il, * 1UNCAP=',I1, 00000770
' EPS=',F8.5, * ET=', F10.3///) 00000780
0043 IF (IINPT.EQ.O0) GO TO 168 00000 790
C 0044 PRINT 100 ,MyN,P 00000600
0045 100 FORMAT (*0', T55, *INPUT DATA'y/1Xy T55, 'wmmem e===',//////1X, 00000810
1741y *NUMBER OF DESIGNS tM)=%, 4Xy14//71X,T41, 00000820
© 2'NUMBER OF ACTIVITIES (N)=®, 1X,14//1X, T41, 00000830
3'NUMBER OF FACILITIES (P)=%,1X, 14///} 00000840
0046 PRINT 105 00000850
(1) 0047 105 FORMAT ( 4X, 'VARIABLE COST MATRIX A(I,J)%,,/4Xy 00000860
1° 'e/) 00000870
0048 DG 110 I=1,M 00000880
(+) 0049 110 PRINT 115¢ I, (ALI,J)49=1,N) 00000890
0050 115 FORMAT (°0°%, T6, °Ix=®, 13, 4X,8113, 4(/, 14X,8113)) 00000500
0051 PRINT 120 00000910
- 0052 120 FORMAT('0%,//4X,*FIXED COST VECTOR B(K)*,/4X, 00000920
’ ' 7) 00000930
0053 PRINT 122, (B(K)K=1,4P) 00000940
(] 0054 122 FORMAT ('0°*, T1S5, 8I13, 3(/, 14X,8113)) 00000550
0055 PRINT 125 00000960
0056 125 FORMAT('0°,//4Xo*CAPACITY LIMIT VECTOR S(k)*,/4X, 00000970
© 1! Yy /) 00000980
0057 PRINT 128y (S5(K)4K=1,P) 00000990
0058 128 FORMAT (*0°', T15, 8113, 3(/, 14X,8113)) 00001000
@ 0059 PRINT 130 00001010
0060 130 FORMAT(®0%,//4X, *CAPACITY USAGE MATRIX D(I,J,K®"y/4X, 00001020
1 '4/) 00001030
¢ 0061 DO 150 K=1,P 00001C40
0062 PRINT 135,K 00001050
0ce63 135 FORMAT (°0°,//5X,°K=%,13/) 00001060
0004 00 145 1=1,M 0Cc001070
0065 PRINT  140,1,(00I4JyK)y J=1,4N) 00001080
ov6s 140 FORMAT (*07%, Tée 'I=', I3, 4X,8I13, (/s 14X,8113)) 00001090
0007 145 CONTINUE 00001100
0068 150 CONTINUE 00001110

*
13
&
&
{
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t
0069 PRINT 155 00001120
0070 155 FORMAT{*0® ,//4X,*DESIGN=FACILITY MATRIX E(I,K!®,/4X, 00001130 ?
( 1 /) 00001140 i
0071 00 160 I=l,M 00001150 _
0072 PRINT 158y I, (E(I,K},K=14P) 00091160 i
( 0073 158 FIRMAT ('0', Té, %1=', 13, &X,8I13, 3(/, 14X,8113)) 00001170
) 0074 160 CON.INUE 00001180
0075 168 IF /ISTEP.EQ.O) GO TO 190 00001190
p) 0076 IF (ISTEP.EQ.1l) GO TO 175 00001200
0077 PRINT 170 00001210 .
0078 170 FORMAT (°0°%,///55X,*DETAILED LISTING OF STEPS®,/) 00001220 ‘
' 0079 GO TO 190 00001230
0080 175 PRINT 180 00001240 J
oosl 180 FORMAT (°0%,///55X, *SUMMARY OF STEPS'*+/) 00001250 .
O [ 35205553 8SS 0SB INITIALIZESSS S0 SSRISEREEEIUSRBASOS20S6888860S 00001260 y
0082 190 BUB=9999999, 00001270 ]
0083 BUBS= BUB/ (1.0¢EPS) 00001280
e 0084 NSX=0 00001290
0085 NOD=1 00001310
0086 18NOD=1 00001315
¢ 0087 INET=0 60001320 ‘
0088 INSET=0 00001330
0089 DO 205 J=1,N 00001390 '
C 0090 FIX(J)=0 00001400 .
0091 KT2(J4)=0 00001410
0092 DO 205 I=1,M 00001420
C 0093 CX(1,4)=0 00001430
0094 205 CONTINUE 00001433
0095 La1=0 00001436
o 0096 LQ2=0 00001440
0097 LR2=0 00001443
0098 CALL TIMET(ITO) 00001445
O 0099 1F (ISTEP.EQ.0) GO TO 208 00001448
0100 PRINT 220,NOD 00001450
o101 208 IF(NSX.EQ.0) GO TO 283 00001453
C c CX{I,J) CONTAINS FIXED AND FREE X({1,J) VARTABLES. 00001456
(o STX{INS) CONTAINS FIXED X(I,J) VARIABLES. 00001460
c CX{I,J) AND STX{INS) ARE UPDATFD BY THE CAPACITY 00001480
(») c RULE, THE BOUNDING RULE, AND THE RULE FOR 00001490
c BRANCHING AND BACKTRACKING. 00001500
c IN CX{I1,J) A FIXED VARIABLE .S RECIORDED AS 1 OR 00001505
(s c 2y AND A FREE VARIABLE AS O. 00001510
c A VALUE OF 1 IMPLIES THAT THAT PARTICULAR VARIASLE 00001515 ;
c IS FIXED, AND FIX{J) IS SET EQUAL TO 1 IMPLYING 00001520 l
0 c THAT COLUMN J HAS A FLXED VARIABLE OF VALUE 1. 00001525 :
c A VALUE OF 2 IMPLIES THAT THAT PARTICULAR VARIABLE 00001520 1
c SHOULD NOT BE CONSIDERED FOR CURREMT COMPUTATIONS. 00001535 !
Qo c AN X(1,J4) RECORDED IN CX{I,J) AS 1 DUE TO THE 00001540 l
c BRANCHING RULE IS RECORDED IN STX{!NS) AS X®#100+4J. 00001565
c AN X(I1,4) RECORDED IN CX(I,J) AS 1 DUE TO THE 00021550 |
t. (o CAPACITY RULE OR THE BOUNDING RI.LE IS RECORDED IN 00001555 !
C STX(INS) AS (X*100+J)+100C000. 00001500 1
c AN X{I,4) RECORDED IN CX(I,J) AS 2 IS RECORDED IN 00001565
c STX(INS) AS ={(X*100+J)=100000V. 00001570
ol02 210 IF (1STEP.EQ.0) GO TO 225 00001580
0103 215 PRINT 220,N0D 00001590
0104 220 FURMAT (%0°,//6X,*NUDE NUMBER®, 177) 00001600

4 5885808086488 UPDATE CX(J9J) FOR BROSOPRIUIS 29SS0 CPIOICICISIIVICDS 00001610
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C BRO IS THE RIGHT BRANCHING VARIABLE 00001615
0105 25 LXx=8RO 00001620
0106 IX=LX/100 00001630
0107 JXELX=1X*100 00001640
0108 CXUIXyJX)=2 00001650
0109 KT2(JIX)=KT2{JX) el 00001660
o110 FIX{Jx)=0 00001720
o111 LQ1=LQl=1 00001725
0112 IF (KT2(JX).LT.(M=1)) GO TO 270 00001730
o113 00 255 1=1.M 00001740
Olle IF (CX({1,JX).EQ.2) GO TO 255 00001750
o115 CX(I4JX)=1 00001760
o116 NSX=NSX ¢l 00001763
o117 STXINSX )= (I#100+JX)+1000000 00001766
o118 FIX(JX)=1 00001770
o119 LQ1=LQl+1 00001780
0120 FIXI(JX)=] 00001790
o121 G0 TO 270 00001800
0122 255 CONTINUE 00001810
0123 270 LQ2=0 00001820
0124 LR2=0 00001825
o125 60 10 283 00001830
0126 272 IF (ISTEP.EC.0) GO TO 276 00001840
0127 PRINT 220,NOCD 00001850
[ 52354588828 58UPDATE CX(I¢J) FOR BRISE2982. 2825358288008 380028 00001853
C BR1 IS THE LEFT BRANCHING VARIABLE 00001856
ul128 276 LQ2=0 00001860
0129 LR2=0 00001866
0130 LXx=BR1 00001870
0131 IX=LX/100 00001875
0132 JXELX~=IX*100 00001880
0133 CXUIXyJX)=] 00001885
0134 FIX(JXx)=1 00001890
0135 LQl=LQl+]1 00001892
0136 00 279 I=1,M 00001895
0137 IF (1X.EQ.I) GO TO 281 00001897
0138 279 CONTINUE 00001900
0139 281 FIXItux)=IX 00001902
0140 283 IF (ISTEP.NE.2) GO TO 303 00001905
Oléel 285 DO 295 I=1,M 00001910
01«2 PRINT 290 I+{CX{IgJ)gJ=1,N) 00001920
Ole3 290 FORMAT (/5Xy*CX{T9d)?aXy?1=%y1342X, 2014/23Xy 2016) 00001930
alas 295 CONTINUE 00001940
0145 PRINT 297, (FIX{J)yJd=1,yN) 00001950
U146 297 FORMAT (/5Xs*FIX(J)%y12X, 20]4/23X, 2014) 00001960
C SERSS B EESSSSAPPLY CAPACITY RULE®9050630480088052000800888208¢0¢ 00001970
c AND UPDATE CX(1,J) AND STX(INS). 00001980
0le7 303 DO 307 K=1,P 00002000
Cle8 FLBI(K)=0 00002015
01«9 307 CONTINUE 0000202%
0150 310 DO 2000 K=1,P 00002030
c FIND THE SUM OF MINIMUM DI(I,J.K) OVER EACH J FOR A 00002040
C GIVEN Ky l.Eey MINSC= SUM OF YINCIY) 00002050
0lsl MINSO=0 00002000
0152 DO 900 J=l,N 00002070
0153 IF(FIX{J).EQ.O0) GO TO 350 00002030
C IF FIX(J)=1, SET MINO(JI2O(I,JeX) FOR CX([,J)=l 00002090

AND MOVE TO NEXT COLUMN J

00002100

sinee e do
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i
) 0154 INDI=FIXI(J) 00002110 ’
0155 MIND(J)=0(IND1,d,X) 00002120 4
¢ 0156 GO TO 800 00002130 i
: 0157 350  LK=0 00002160 H
0158 I=1 00002170 :
( 0159 MIND(J)=D(I44,4X) 00002180 2
; ¢ SKIP D(I,JsK) WHEN CX{I,J)=2 € MOVE TO NEXT ROW I 00002190 ‘i
0160 400 IF(CX(1,4).EQ.2) GO TO 600 00002200
@ 0161 500 TF(D(TsdsK)oLTMIND(S)) MIND(JIZD(TodeX) 00002210 %
ole2 G0 TO 700 00002220
o163 600  LK=LKel 00002230
O 0164 IF(1.GT.LK) GO TO 700 00002240
0165 I=1+1 00002250 §
0106 MIND(JI=0(1,d,K) 00002260
O 0167 60 TO 750 00002270
0loe8 70C I=s]l+}l 00002280
0169 750 IF(I.LE.M) GO TO 400 00002290
(} o170 800 MINSD=MINSD+MIND(J) 00002300
0171 900 CONTINUE 00002310
0172 910 IF (ISTEP.NE.2) GO TO 960 00002320
o 0173 PRINT 950, Ky MINSD, (MIND(J),J=l,N) 00002330
0174 950  FORMAT (°0%, *KyMINSDs(MIND(J)sd=1yN)* 101044 (/444Xs81100) 00002340
0175 960 If (MINSD.EC.O) GO TO 975 00002342
0 0176 965 IF( FLB(K).EQ.1) GO TO 975 00002344 i
0177 970  F.B(KI=1 00002346
0178 975 IF (IUNCAP.EQ.1) GO TG 2000 00002348 ’
o 0179 978 IF (ICAPR.EQ.0) GO TG 2000 00002349 b
c FIND SALANCE AVAILASLE CAPACITY IBALD FOR A GIVEN K 00002350
C IF IBALD IS NEGATIVEy, THEN BACKTRACK. 00002360
L 0130 980 1BALD=S (K )=MINSD 00002380
0181 1000 1F (IBALD.LT.0) GO TO 6200 00002390
0182 DO 1500 J=1,N 00002400
o) c SKIP COLUMN J IF FIX(J)=l 00002410
0183 IF (FIX{J).EQ.1) GO TO 1500 00002420
0184 00 1300 I=1,M 00002430
o ¢ SKIP ROW I IF CX(1,4)%2 00002440
o185 1100 IFICX(IoJ)eEQe2) GO TO 1300 00002450
c COMPUTE DIFFERENCE BETWEEN D(I,J,K) AND MIND(J). 00002470
() C IF 1T 1S MDRE THAN AVAILABE BALANCE, SET CX(I,J4)=2 00002480
0186 1200 1I01FG=0(T ¢4y K)=MIND(J) 00002490
0187 IF ((IDIFD=1BALD).LE.O) GO TO 1300 00002510
o 0188 CX11,4)=2 00002520
0139 NSX=NSX+1 00002523
0190 STX(NSX )=={I#100+J4)=1000000 00002526 |
J [ LQ2 COUNTS THE NUMBER OF CX(I,J) VALUES SET EQUAL 000025130
¢ T0 2 IN A CYCLE 00002540
o191 LQ2=LQ2+1 00002550
° C KT2(J) KEEPS AN ACCOUNT OF-CX(I,J) VALUES SET EQUAL 00002560
c TO 2 FOR COLUMN J 00002570 .
0192 KT21Jd)=KT2(J)+1 00002580 4
(. c FOR COLUMN Jy IF ALL BUY ONE rX{T,J) VALUES ARE 00002590 i
c ECUAL TO 2, SET THAT CX(I,J)=l € SET FIX{JI=1l 00002600 i
0193 IF(KT2(J) LT (M=1)) GO TGO 1300 00002610 i
| V194 D0 1250 LR=1,M 00002620 i
0195 IF(CX({LRyJ).EQ.2) GO TO 1250 00002630
0196 CAltRydI=1 00002640
0197 NSX=NSX el 00002643

o1ys8 STX{NSX )= {LR®100+4)+1000000 000026406
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21 MA IN DAE = 80315 117071726
FIX(J4)=l 00002650
LQl KEEPS AN ACCOUNT OFf COLUMNS FOR WHICH FIX(J)=l 00002655
LQl=LQl+1 00002660
FIXI(J) SPECIFIES INOEX I FOR WHICH FIX(J)s=l} 00002662
FIXTI(J)=LR 00002665
GO 70 1500 00002670
CONTINUE 00007680
CONTINUE 00002690
CONTINUE 00002700
IF (ISTEP.NE.2) GO TO 2000 00002710
PRINT 1900, Ky LQ2, LQl 00002720
FORMAT (*0%,°K=%,13,* LQ2=',13, * LQ1=*, I3) 00002730
DO 1930 I=l,M 00002740
PRINT 290y I¢{(CX{I19J)yJ=1eN} 00002750
CONTINUE 00002770
PRINT 297y (FIX{JS)yJI=1,4N) 00002780
CONTINUE 00002800
A CYCLE EXAMINES ALL THE FACILITIES. 00002803
IF IN A CYCLE, THE CAPACITY RULE RESULTS IN SETYTING 00002810
AUDITIONAL CX(I,J) VALUES EQUAL TO 2, THEN REPEAT 00002820
THE CYCLE. BUT IF FIX(J)=1 FOR ALL Jy THEN DO NOT 00002830
REPEATY THE CYCLE. 00002835
IF (LQl.EQ.N) GO TO 26400 00002840
IF (LQ2.EQ.LR2) GO TO 2400 00002845
LR2=LQ2 00002860
G0 TO 310 00002870
sxessesnsnssssSOLVE (LAGRANGIAN) RELAXED PRUBLEM®Ss*ssssssssss 00002880
UPDATE VECTOR OF FACILITIES FLB(K) FOR COMPUTING 00002890
ClIyJ) MATRIX & LOWER BOUNO. IT HAS VALUE 1 IF & 00002900
FACILITY IS USED, OTHERWISE IT HAS O VALUE. 00002910
DO 3000 J=1,N 00002950
IF (FIX(J).EQ.0) GO TO 30G0 00002960
INDI=FIXI(J) 00002970
DO 2550 X=1,P 00C02990
IF (EUINDI,XK).EQ.O) GO YO 2550 00003000
IF (FLB(K).EQ.1) GO TO 2550 00003010
FLB(K)=1 00003020
CONTINUE 00003030
CONTINUE 00003060
IF (ISTEP.NE.2) GO TO 3150 00003070
PRINT 3100, (FLB(K) K=1,P) 00003080
FORMAT('O*y *{FLBIK) K=1oP) ¢, 201l4/l6Xe2014) 00003090
COMPUTE COST MATRIX C(lsJ) FOR THE RELAXED PROBLEM 00003100
D0 3400 J=1,4N 00003110
DO 3300 I=1,M 00003120
BSUM=0.0 00003130
DO 3200 Xx=1,P 00003140
IF (FLB(K).EQ.1) GO TO 3200 00003150
IF (E(1,X).EQ.0) GO TO 3200 00003160
BSUM=BSUM+{B(K) * (FLOAT(D(IJ¢K))/ FLOAT(SIXK)}))) 00003170
CONT INUE 00003180
ClIed)=Aa(l,J)+BSUM 00003190
CONTINUE 00003200
CONTINUE 00003210
IF (ISTEP.NEL2) GO TQ 3445 00003220
DO 3420 I=1.M 00003230
PRINT 3420, I, (CtIyJ)sJ=1,N) 00003250
FORMAT (/5Xy *CUlIoJ)*95Xy *I=%,y ]3,2Xy S5F15.4, 00003260

B IR
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21 MA IN DATE = 80315 11707724
6(/23Xy SF15.4)} 00003265
3430 CONTINUE 00003270
FIND SUM OF MINIMUM C(I,J) VALUES QVER EACH J, 00003290
I4Eey MINSC=SUM OF MINC(J). 00003300
IF FIX(J)=l, THEN MINC(J)=ClT,J) WHERE CX{I,d)=1 00003310
3445 MINSC=0.0 00003320
DO 3900 J=1,N 00003340
1IF (FIX(J).EQ.0) GO TO 3500 00003350
INDI=FIXI(J) 00003360
MINCU(J)}=CUINDI,J) 00003370
SOLX(J)=INDI 00003180
GO TO 3850 00003410
LK=0 00003430
I=1 00003440
SKIP ClI,J) ELEMENTY IF CX(YyJ)=2 & MOVE TO NEXT 1 00003470
IF (CX{I,J).EQe2) GO TO 370 00003480
IF ((1=LK).EQ.1) GO TO 3600 00003485
IF (Ct1,J).GE.MINCI(J)) GO TO 3750 00003490
MINC(J)=C(I,4Jd) 00003500
IMIN=] 00003510
60 TOo 3750 00003520
LK=LK+1 00003530
I=lel 00003590
IF (I.LE.M) GO TO 3550 00003600
SOLX(J)=IMIN 00003610
MINSC=MINSC+MINC(J) 00003620
CONTINUE 00003630
IF (ISTEP.NE.2) GO TO 3940 00003640
CO %720 J=1.N 00003650
PRINT 3910 JyMINC(J),SOLX(J) 00003660
FORMAT (0%, *J4yMINC(J),SOLX(J)?y I5,F15.4,16) 00003670
CONTINUE 00003680
COMPUTE FIXED COST FC FOR L{WER BOUND 00003710
FC=0 000013720
DO 4000 K=),P 00003730
IF (FLB(K).EQ.O) GO TD 4000 00003740
FC=FC+B (K) 00003750
CONTINUE 00003760
sansassrs s s OMPUTE LOWER BOUND LOWBSSSSSS¢3 8388036800 s0eee 00003770
LOWB=MINSC+FC 00003780
IF {ISTEP.EQ.O) GO TO 4150 00003790
PRINT 4120, MINSC, FC, LOWSB 00003800
FORMAT (*0',* MINSCy FCy LOWB *, F1lS.4, 115, F15.4) 00003810
COMPARE LOWER BOUND WITH BESY UPPER BOUND STAR 00003820
BUBS WHICH EQUALS BUBZ{1+EPS), IF LOWE IS 00003830
GREATER THAN OR EQUAL TO BUBS, YTHEN BACKTRACK 000023840
IF (LOWB.GE.BUBS)GO TO 6200 000013850
CHECK IF CURRENT SOLUTION SATISFIES CAPACITY 00003880
CONSTRAINTS . 000013890
IF (JUNCAP_EC.]) GO TO 4420 00003900
DO 4400 K=1,P 00003910
NSUMD=0 00003920
D0 4300 J=]IyN 00003930
Ix=SCLX(J) 000013950
NSUMD=NSUMD+DIIXyJy K) 00003960
CONTINUE 00003970
IF (ISTEPJNEL2) GO TQ %320 00003980
PRINT 4310y KyNSUMD 00003990
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0291
0292
0293
0294

0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
G312
0313
0314
0315
0316

0317
0318
0319
0320
0321
0322
0323
0324
0325
0320

0327

0328

4310
©320

“400

[aNoNaNaNalal

4420

450

4500

©550

4600

4650

4660
«700
4708

4710

oo0n

©750
4770

©780
4800

«850

%900

5100
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21 MA IN DATE = 80315 11707726

FORMAT (°*0°, *K,NSUMD?,2110) 00004000
IF(NSUMD.LE.S(K)) GO TQ 4400 00004010

GO T0 5100 00004020
CONTINUE 00004030
seseversss2s9x(CMPUTE UPPER BOUND UPB IF CAPACITY CONSTRAINTS 00004040
ARE SATISFIED. 00004050

UPB=SUM OF A(I,J)+FIXED COST FCUS BASED ON 00004060

SOLUTION VECTOR SOLX(J) 00004070

VECTOR OF FACILITIES FOR UPPER BOUND FUBIK) MHAS 00004080

VALUES 1 OR O BASED ON FACIYTILY USED OR OTHERWISE 00004090

DO 4450 K=1,P 00004100
FUBI(K =0 00004110
CONTINUE 00004120
NSUMA=0 00004130
FCUB=0 00004140
DO 4650 J=],N 00C 4150
IX=S0LX(J} 00004170
NSUMA=NSUMA+A(IX,J) 00004180

DO 4600 K=1,P 00004190
IF(ELIX9K).EQ.O0) GO TO 4600 00004200
IF(FUB(K) .EQ.1) GO TO 4600 00004210
FUB(X)=] 00004220
FCUB=FCUB+B(K) 00004230
CONTINUE 00004240
CONTINUE 00004250
1IF (ISTEP.NE.2) GO TO 4700 00004260
PRINT 40609 (FUBIK) K=1,P) 00004270
FORMAT(®0® 3 (FUB(K) 4K=1oP) 'y 2014/16X%X92014) 00004280
UPB=NSUMA+FCUB 00004290
1F (ISTEP.EQ.O0) GO TO 4750 00004300
PRINT 4710, NSUMA, FCUB, UPB, BUB, BUBS 00004310
FORMAT(®0® ,*NSUMA, FCUB, UPB, BUB, BUBS *,2I10s JF15.4) 00004320
COMPARE UPPER BOUND WITH BEST UPPEK B8QUND 00004330

IF UPB IS LESS THAN BUB, SET IT AS 8UB AND 00004340

NOTE THE SOLUTICN 00004350

IF (UPB.GE.BUB) GO TO 5100 00004360
8UB=UPB 00004370
BUBS= BUB/ (1.0+EPS) 00004380
IBNOO=NOD 00004385
PRINT 4780, IBNOD, BUB, BUBS 00004386
FORMAT (*0°*, *IBNOD, BUB, BUBS®, I10, 2F15.%) 00004388
DO 4800 J=1,N 00004390
BSOLX(J)=SOLX(J) 00004400
DO 4850 K=1,P 00004410
B8SOLY(X)aFUB(K) 00004420
848520888083 COMPARE LOWB WITH B8UBS. 1F LOWB 1S GREATER 00004430
THAN OR EQUAL TO BUBS,y THEN BACKTRACK 00004440

IF (LOWB.GE.BUBSIGO TO 6200 00004450
seeePESOENSESSIF FIX(J) VALUES ARE 1 FOR EACH J, THEN BACKTRACK 00004480
IF (LQ1.EQ.N} GO TO 6200 00004500
2038085888980 APPLY THE BOUNGING RULE®SSeess40ss 0L 000000080000 00004510
IF THE OIFFERENCE SETWEEN C{1,J) AND MINCI(J) 1S 00004515

GREATER THAN TFHE DIFFLRENCE BETWLEN BUBS AND 00004520

LOwWB, THEN CX{1,J)=2 000046525

e IOE SOOI SIOSAPPLY BRANCHING RULE AND FIND 8R1Y1, THE NEXT 00004530
VARIAGLE FOR LEFT BRANCHING. 0004540

FIND NMINC{J)y THE NEXT HIGHER VALUE THAN MINC{J) 00004550

AND OIFBR(J)y ThE UIFFERENCE BLTNEEN THEM, 00004555
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FURTRAN

0329
0330
0331
0332
0333
03234

0335
0336
0337

0338
0339
0340
0341
03«2
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367

0368

0369
G370
0371
0372
0373
0374
0375
0376
Q377
6378
0379
0330
0331
03d2

1V G LEVEL
5200

5250
C

5300

5320

5330

5350
5400

5500
5600

5620

C
5650
c

5660

5690
5800
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21 MA IN DAIE = 80315

OBOUND=RUB S=LOWB
00 5250 J=1,N
NMINC (J)=0.0
DIFBR{J)=0.0
CONTINUE
DO 5600 J=1,N
SKIP TO NEXT J IF FIX(J)=1
1F (FIX(J).EQ.1) GO TO 5600
K=0
=1
SKIP C(I.Jd) IF CXtl,J)=2 & :HAVE TO NEXT I
IF (CX(1,J).EQ.2) GO TO 5350
IF (1.EQ.SOLX{J)) GO TO 5350
IF ((CUI,J)=MINC(J)).GT.D90UND) GO TO 5330
IF ((1=LX).EQ.1) GO TO 5320
IF (C(1,J).GE.NMINC(J)) GO TO 5400
NMINC(J)=ClI4J)
GO TO 5400
CX{(I,d)=2
NSX=NSX+1
STX{NSX)==(1#100+J)=1000000
KT2(J)1=KT2(J1+1
1F(KT2(J).LT.(M=1)) GO TO 5350
INDI=SOLX{J)
CX(INDI,J)=1
NIX=NSX+1
STX(NSX)= (INDI*100+J)+1000000
FIXtJI=1
LQ1=LQl+]
FIXI{(J)=INDI
GO TO 5600
LK=LK*+)
I=1+1
IF(1.LE.M) GO TO 5300
DIFBRIJI=NMINC (J)=MINC(J)
CONTINUE
IF (ISTEP.NE.2) GO TO 5650
DO 5620 I=1,M
PRINT 290, 1+1CX(1,J)4J=1,yN)
CONT.NUE
PRINT 297, (FIX(J)sJ=1eN)
IF FIX(J41=1 FOR ALL Jy THEN CGACKTRACLK.
IF (LQl.EQ.N) GO TO 6200
FIND MAXDIF, THE MAXIMUM DIF=ERENCE DIFBR(J)
LF=0
DO 5800 J=1,N
IF (FIX(J).EQ.1) GO TO 5690
IF {((J=LF).EQ.1) GO TO 5660
1F (DIFBR(J).LT.MAXDIF) GO TO 5800
MAXDIF=DIFBR(J)
LI=J
GO 1O 5800
LF=LF+]
CONTINUE
IF JISTEP.NE.2) GD TO 5840
DC 5820 J=1,N
IF (FIX{J).EQ.1) GO TG 5820
PRINT 5810, J, NMINC(J)}, MINC(J), DIFBR{J)

11/07/724

00004568
00004570
00004580
00004590
00004600
00004610
00004620
00004630
00004640
00004650
00004670
00004680
000C 4690
00004700

00004710

00004720
00004730
00004735
00004740
00004742
00004745
00004747
00004750
00004752
00004755
00004758
00004760
30004762
00004764
00004766
00004768
00004770
00004775
00004780
00004785
00004790
00004795
00004820
00004830
00004850
00004860
00004880
00004890
00004900
00004905
00004910
00004915
00004920
00004925
00004930
00004935
00004%40
00004943
00004948
00004950
00004953
00004956
00004960
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FORTRAN 1V G LEVEL 21 MA IN DATE = 90315 L1/707/24
0383 5810 FORMAT ('0% *JyNMINC(J)¢MINC(J) OIFBRIJ}*y I5,3F15.4) 00004963
038« 5820 CONTINUE 000049606
C *830¢2 28w 2s228BRANCHING VARIABLE BR1 CORRESPONDS TGO MAXDIFessss 00004970
0385 5840 DO 5900 J=1,N 00004980
0386 IF (J.NE.LJ) GO TO 5900 00004990
0387 5850 BR1=SOLX(J)*100+J 00005000
0388 1F (1STEP.EQ.0) GO TO 6020 00005010
0389 PRINT 5880, BR1 00005020
0390 5880 FORMAT(*0'y* BR1*,110) 00005030
0391 GO TO 6020 00005040
0392 5900 CONTINUE 00005050
c 2358858288888 8JPDATE STX(INS) AND NSXU23S884558488835585588888 00005060
c NSX REPRESENTS THE NUMBER OF VARIABLES IN STX{INS) 00005070
0393 6020 NSX=NSX+l 00005090
0394 6040 STXINSX)=BR1 00005100
0395 IF {(ISTEP«NE.2) GO TO 6100 00005150
0396 PRINT 6088, (STX(INS)y INS=1,NSX) 00005160
0397 0088 FORMAT(*0*,* STX(INS)*, 10110, 122(/y 10X,10110}} 00005170
C *ex a0 22 MOVE TO THE NEXT (LEFT BRANCH) NODE AND APPLY 00005220
c CAPACITY RULE 00005230
0398 6100 NOD=NQOD+1 00005240
0399 6110 IF (ET.EQ.0.0) GO TO 6150 00005242
0400 IF(INSET.EQ.1) GO TO 6147 00005244
0401 IF (INET.EQ.1) GO TO 4150 00005246
0402 CALL TIMETC(INT) 00005248
06403 ELIN=(INT=110)%26,04E=6 00005250
040« JF (ELTN.LT.ET) GO TO 6150 00005253
0405 6120 PRINT 6125, NOD, ELTN, B8UB, BUBS, IBNOD 00005256
0400 6125 FORMAT (°0°%, *WAS AT NODE'¢16y * AT ELAPSED TIME =%y FlO.4y 00005260
1 ¢ SECONDS.'y/1Xy * BUB=*,Fl5.49 * BUBS=',FL15.4, 000052063
2 * AT NODE=',1IT) 00005266
Ge07 18uB=8u8 00005267
0408 1F (IBUB.EQ.9999999) GO TQ 6146 00005268
04u9 6130 PRINT 6135, (BSOLX{(J)yJ=1,4N) 00005270
0410 0135 FORMAT('0°', *SOLUTION CORRESPONDING TO BUB IS*, //1X, 00005273
1 *{BSOLX(J)y J=14NI*y10184+3(/18X,1018)) 00005276
O4ll 6140 PRINT 6145, (BSOLY(K), K=1,P) 00005280
'L} ¥3 6145 FORMAT(/1X,*(BSOLY(K)y, K=1,P)*,101I8,2(/18X, 1018)}) 00005290
0413 6146 INET=1 00005292
04 ls INIS=ISTEP 00005294«
[+ 13 &1 INSET=1 00005296
Qale 1STEP=2 00005298
0417 GO TO 6150 00005300
0418 6147 ISTEP=INIS 00005302
0419 INSET=0 00005304
0420 6150 GO TO 272 00005306
c S22 2588288908END IF AT THE ROOT NODESSSSESSARSS 160400820088 00005308
0421 6200 IF (NSX.EQ.O0) GO YO 8100 00005310
0622 6220 1F ( 1ABS{STX{NSX)).GT.1000000}) GO TO 6500 00005320
0623 6250 BRO=STXINSX) 00005330
Qu24 6270 STX(NSX)==BR0O~10C0000 00005340
06425 IF (ISTEP.EQ.O) GD TO 6308 00005390
O4co PRINT 6505, B8RO 00005400
0427 6305 FQRMAT(*0%, '8RO *,110) 00005410
06s8 6308 IF (ISTEP.NE.2) GO TO 6330 00005«20
Cal9 PRINT 6088, (STX(INS}, INS=1,NSX) 0000530
C ¢essssreesssesMOVE TO THE NEXT (RIGHT BRANCH) NUDE AND APPLY 00005490
c CAPACITY RULE 00005500
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FORTRAN IV G LEVEL 21 MA IN DAT: = 80315 11707724
0430 6330 NCD=NOD+1 00005510
0431 6410 IF (ET.EQ.0.0) GO TO 6450 00005512
0432 IF tINSET.EQ.1) GD TO 6445 00005516
Q433 IF (INET.EC.1) GO TO 6450 00005518
0434 CALL TIMET(INT) 00005520
0435 ELIN={INT=]TO)#26.,04E=6 00005523
0436 IF (ELTNL.LT.ET) GO TO 6450 00005526
0437 6420 PRINT 6125, NOD, ELTN, BUB, B8UBS, IBNOD 00005528
0@38 18uB=BUB 00005530
0439 IF (IBUB.EQ.9999999) GO TO 6442 00005532
0440 6430 PRINT 6135, (BSOLX(J)sJ=1,N) 00005533
044l 6440 PRINT 6145, (BSOLY(K), K=1,P} 00005536
Q442 6442 INET=1 00005538
0443 INIS=]ISTEP 00005540
D444 INSET=1 00005542
Q445 JSTEP=2 00005544
Qb4ub GO TO 6450 00005546
0447 6445 ISTEP=INIS 00005548
D448 INSET=0 00005550
0449 6450 GO TO 210 00005552
0450 6500 IF ( STXINSX).GT.1000000) GO TO 6520 00005555
0451 LX==5TX(NSX}=1000000 00005560
0452 IX=tx/100 00005570
06453 JX=LX=IX*100 00005580
Qeb4e CX(IXyJX)=0 00005590
0455 KT2(IX1=KT2(JX =1l 00005595
0456 GO TD 6550 00005600
0457 6520 LX= STX(NSX)=1000000 00005610
0«58 IX=LX/100 00005620
0459 JX=LX=]X*100 00005630
04060 CXUIXyJX)=0 00005640
0461 FaX1JX)=0 00005650
0462 LQ1=LQl=1 00005660
0463 6550 NSX=NSX=] 00005690
0464 GO TO 6200 00005700
2535543005338 8PRINT THE OQUTPUTESSSSSSE808 5830826000t SRssRd e 00005730
0«65 8100 1B8UB=BUB 00005740
0466 CALL TIMET(IT1) 00005750
0467 ELTI=(IT1=ITO)*26.04E=6 00005760
0468 PRINT 8105, ELT1 00005770
0469 8105 FORMAT ('0*,///1X, 'ELAPSED TIME IN SECONDS=?, F15.8) 00005780
0470 PRINT 8120, NGO 00005790
Oe71 8120 FORMAT t *'0°,°*TOTAL NUMBER OF NODES EXPLORED =v,13) 00005800
0672 IF {IBUB.EQ.9999999) GO TQ 8350 00005810
0473 8130 PRINTY 815D 00005820
[\ % I 8150 FORMAT (°*0°¢, °*NOTE: 1. FOLLOWING X{1,J) VARIASLES SHOW DESIGN®', 00005830
1 * I TO WHICH ACTIVITY J IS ASSIGNED FOR J=]1 TO N, ', 00005840
2 /TXy *2. IF EPSILON EPS WAS ASSIGNED A POSITIVES®, 00005850
3 ¥ (NON=ZERQU) VALUE, THE SOLUTIGN MAY BE SUBOPTIMAL.',/}) 0000586C
0475 8180 PRINT 8200, (BSOLX{JIsJ=1yN} 00005870
0476 8200 FORMAT('0',T155, 'OPTIMAL SOLUTION®,/Z1X,T5%, 00005880
1 . Yo //71Xe *X(1sJ) WITH VALUE 1:°,1018, 00005890
2 3(/7,21X%X,1018)) 00005900
0«77 220 PRINT 8250, (BSOLY(K)y K=],P) 00005910
vate 8250 FORMAT (°0°*, *Y(K) VALUES:*, B8X, 1018, 21(/,21X,1018)) 00005920
0479 8280 PRINT 8300,IBUB 00005930
J&d0 8300 FURMAT (*0*, 'OPTIYAL VALUE OF OBJECTIVE FUNTTIONZz*, I15///} 00005940
Getl GO TO 8500 00005950
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FORTRAN IV G LEVEL 21 MA IN DATE = 8C315 11707724
0«82 8350 PRINT 8400 00005960
0483 8400 FORMAT (*0°, * PROBLEM DOES NOT HAVE A FEASIBLE SOLUTIONS, 00005970
{. 1 /1Xy ' BECAUSE THE CAPACITY CONSTRAINTS CANNOT?, 00005980
2 /1Xy * BE SATISFIED.?4/) 00005990
0484 8500 PRINT 8550 00006000
C 0485 8550 FORMAT (°0°%,'sssseNQRMAL END OF JOBsssss? /) 00006010
V486 8600 STOP 00006020
0487 END 00006030
o




APPENDIX B

DETAILED PRINTOUT FOR A TEST PROBLEM
(TEST PROBLEM WITH m=5, n=4, AND p=54)
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